### **Delirium in Advanced Cancer**:

**An Evidence Based Update** 

David Hui, MD, MSc MD Anderson Cancer Center, USA

2<sup>nd</sup> Sapporo Conference for Palliative and Supportive Care in Cancer Sapporo, Japan June 16, 2017



# Outline

- Introduction
- Treatment
  - Setting therapeutic goals
  - Treatment of underlying causes
  - Non-pharmacologic approaches
  - Pharmacologic approaches
- Summary

# **Cardinal Features**

### **DSM-IV Criteria**

- A. Disturbance of consciousness (i.e. reduced clarity of awareness of the environment) with reduced ability to focus, sustain or shift attention.
- B. A change in cognition or the development of a perceptual disturbance that is not better accounted for by a pre-existing, established or evolving dementia.
- C. The disturbance develops over a short period of time (usually hours to days) and tends to fluctuate during the course of the day
- D. There is evidence from the history, physical examination or laboratory findings that the disturbance is caused by the direct physiological consequences of a general medical condition.

### DSM-5 Criteria

A. Disturbance in *attention* (i.e., reduced ability to direct, focus, sustain, and shift attention) and <u>awareness</u> (reduced *orientation to the environment*).

B. The disturbance develops over a short period of time (usually hours to a few days), *represents an acute change from baseline attention and awareness*, and tends to fluctuate in severity during the course of a day.

C. An additional disturbance in cognition (e.g.memory deficit, disorientation, language, visuospatial ability, or perception).

D. The disturbances in Criteria A and C are not better explained by a pre-existing, established or evolving neurocognitive disorder and do not occur in the context of a severely reduced level of arousal such as coma.

E. There is evidence from the history, physical examination or laboratory findings that the disturbance is *a direct* physiological consequence of another medical condition, *substance intoxication or withdrawal (i.e. due to a drug of abuse or to a medication), or exposure to a toxin, or is due to multiple etiologies.* 

#### European Delirium Association & American Delirium Association BMC Medicine 2014

# **Delirium is Common**

• Patient characteristics are different



(Siddiqi et al. 2006)



(Pun et al. 2007)

(Neufeld et al. 2013)

13-42% at

(Hosie et al. 2012)

# **Causes and Outcomes**



# **Delirium Recall and Related Distress**



#### **Recalled Symptom Frequency**

#### **Distress Score**

|                         | Р   | atient            | F<br>Ca | amily<br>regiver  |      | F   | Patient           | F<br>Ca | amily<br>regiver  |     |
|-------------------------|-----|-------------------|---------|-------------------|------|-----|-------------------|---------|-------------------|-----|
|                         | No. | Median<br>(Q1-Q3) | No.     | Median<br>(Q1-Q3) | Р    | No. | Median<br>(Q1-Q3) | No.     | Median<br>(Q1-Q3) | Ρ   |
| Auditory hallucinations | 18  | 2 (1-2)           | 30      | 2 (2-3)           | 0.14 | 17  | 3 (2-3)           | 29      | 3 (1-4)           | .38 |
| Delusional thoughts     | 33  | 2 (1-3)           | 46      | 2 (1-3)           | 0.20 | 31  | 3 (1-4)           | 45      | 3 (2-4)           | .31 |
| Time orientation        | 57  | 3 (2-4)           | 79      | 3 (2-4)           | 0.87 | 56  | 3 (1-3.5)         | 77      | 3 (1-4)           | .69 |
| Place orientation       | 52  | 2 (1-4)           | 75      | 2 (2-4)           | 0.74 | 52  | 3 (1-4)           | 73      | 3 (1-4)           | .19 |
| Psychomotor agitation   | 55  | 2 (2-4)           | 82      | 3 (2-4)           | 0.43 | 54  | 3 (2-4)           | 80      | 4 (3-4)           | .09 |
| Tactile hallucinations  | 12  | 2 (1-2.5)         | 25      | 2 (1-3)           | 0.79 | 12  | 3.5 (2-4)         | 23      | 3 (1-4)           | .68 |
| Visual hallucinations   | 50  | 2 (1-3)           | 55      | 2 (1-3)           | 0.93 | 49  | 2 (1-3)           | 53      | 3 (2-4)           | .01 |

#### Bruera et al. Cancer 2008



### **Delirium Assessment**

#### **Missed Delirium**



252/771 (33%) patients who had an inpatient palliative care consult found to have delirium by the palliative care team. 99 (39%) diagnosed with delirium by oncology team



Routine screening is key!

#### De La Cruz et al. Supp Care Cancer 2015

### **Delirium Assessment**

#### **Screening Tools**

|                                                       | Burden                               | Sens | Spc | LR- (95% CI)      | LR+ (95% CI)   |
|-------------------------------------------------------|--------------------------------------|------|-----|-------------------|----------------|
| Confusion Assessment<br>Method (CAM)                  | 4 items<br><5 min                    | 86%  | 93% | 0.16 (0.09, 0.29) | 9.6 (5.8, 16)  |
| Delirium Rating Scale<br>(DRS)                        | 10 items<br>Cutoff ≥10/32            | 95%  | 79% | 0.07 (0.03, 0.37) | 4.3 (2.1, 9.1) |
| Memorial Delirium<br>Assessment Scale (MDAS)          | 10 items<br><10 min<br>Cutoff ≥10/30 | 92%  | 92% |                   | 12 (2.4, 15.8) |
| Delirium Observation<br>Screening Scale<br>(DOS/DOSS) | 13/25 items<br><5/<10 min            | 92%  | 82% | 0.1 (0.03, 0.37)  | 5.2 (2.7, 9.9) |

#### Greer et al. VA-ESP Project #09-009 2011

# Outline

- Introduction
- Treatment
  - Setting therapeutic goals
  - Treatment of underlying causes
  - Non-pharmacologic approaches
  - Pharmacologic approaches
- Summary

# **Prognosis-Based Decision Making**

#### **Delirium in Advanced Cancer**



**Palliative Care Settings** 

Hui et al. Curr Opin Supp Palliat Care 2016

# **Delirium Management**

### **Setting Realistic Goals**



# **Reversibility of Delirium**

### **Palliative Care Setting**

- 71 patients with advanced cancer admitted to palliative care developed delirium
  - Reversal in 46/94 (49%) episodes
  - Terminal delirium in 46/52 (88%) APCU deaths
  - Median survival ~25 days

|                            | No. (%)              | of Episodes             | l               | Jnivariate Analysis | Multivariate Analysis |                 |           |
|----------------------------|----------------------|-------------------------|-----------------|---------------------|-----------------------|-----------------|-----------|
| Categories†                | Reversed<br>(n = 40) | Nonreversed<br>(n = 31) | Hazard<br>Ratio | 95% Cl              | Р                     | Hazard<br>Ratio | 95% Cl    |
| Psychoactive drugs         | 38 (95)              | 15 (48)                 | 8.85            | 2.13-36.7           | .003                  | 6.65            | 1.49-29.6 |
| Dehydration                | 26 (65)              | 8 (26)                  | 2.35            | 1.20-4.62           | .01                   | 1.50            | 0.70-3.20 |
| Miscellaneous other causes | 7 (18)               | 7 (23)                  | 0.69            | 0.30-1.59           | .37                   | 1.10            | 0.45-2.70 |
| Nonrespiratory infection   | 10 (25)              | 8 (26)                  | 0.56            | 0.26-1.18           | .12                   | 0.23            | 0.08-0.64 |
| Hypoxic encephalopathy     | 11 (28)              | 22 (71)                 | 0.39            | 0.19-0.80           | .008                  | 0.32            | 0.15-0.70 |
| Metabolic                  | 10 (25)              | 18 (58)                 | 0.44            | 0.21-0.91           | .02                   | 0.46            | 0.21-1.02 |
| Hematologic                | 5 (13)               | 7 (23)                  | 0.58            | 0.22-1.51           | .25                   | 1.21            | 0.43-3.44 |

#### Lawlor et al. Arch Intern Med 2001

# **Reversibility of Delirium**

### **Thiamine Deficiency**

 Wernicke encephalopathy diagnosed clinically and treated before lab values confirmed

|                      | Case 1  | Case 2          | Case 3          |
|----------------------|---------|-----------------|-----------------|
| Patient              | 71yo M  | 66yo F          | 77yo F          |
| DRS baseline         | 21      | 24              | 24              |
| Onset                | Gradual | Gradual         | Gradual         |
| Ataxia               | Yes     | NA              | Yes             |
| Ocular               | No      | No              | Yes             |
| Thiamine lvl         | 18ng/ml | 15ng/ml         | NA              |
| Reversed<br>after tx | Yes     | After 3<br>days | After 3<br>days |

- 70 year old woman with delirium, disorientation, cognitive impairment but no ocular changes or gait abnormalities
  - Thiamine level 14 (normal 20-50 ng/ml), started IV thiamine 100 mg/day
  - Day 1: DRS 24
  - Day 2: improvement in cognition and insomnia
  - Day 3: able to communicate
  - Day 4: DRS 3. Thiamine level 679 ng/ml
  - Died 10 days later

Onishi et al. Supp Care Cancer 2004

Yae et al. Palliat Supp Care 2005

# **Treat Underlying Cause(s)**

#### **Take Home Message**



# **Delirium Management**

### **Setting Realistic Goals**



## **Non-Pharmacologic Measures**

#### **Hydration for Delirium Prevention**

Double blind, randomized controlled trial



Bruera et al. J Clin Oncol 2013

# **Non-Pharmacologic Measures**

#### Hydration for Delirium Prevention

| Assessments                 | Change betwe      | een Baseline and I | Day 4     | Change betw       | een Baseline and I | Day 7     |
|-----------------------------|-------------------|--------------------|-----------|-------------------|--------------------|-----------|
|                             | Hydration         | Placebo            | <b>P-</b> | Hydration         | Placebo            | <b>P-</b> |
|                             | N=49              | N=51               | value     | N=44              | N=49               | value     |
| Composite outcome [fatigue, |                   |                    |           |                   |                    |           |
| drowsiness, hallucinations, | -3.3 (-1.1, -5.4) | -2.8 (-0.2, -5.3)  | 0.77      | -4.9 (-2.2, -7.7) | -3.8 (-1.1, -6.4)  | 0.54      |
| myoclonus], mean (95%       |                   |                    |           |                   |                    |           |
| confidence interval)        |                   |                    |           |                   |                    |           |
| MDAS, median (IQR)          | 1 (-2, 5.8)       | 3.5 (-0.3, 14.5)   | 0.08      | 2 (-2, 10)        | 2.5 (-1, 14)       | 0.44      |
| NuDESC , median (SD)        |                   |                    |           |                   |                    |           |
| Day                         | 0 (-1, 1)         | 0 (-1, 2)          | 0.13      | 0 (0, 0)          | 0 (0, 1)           | 0.36      |
| Evening                     | 0 (-1, 1)         | 0 (-1, 2)          | 0.40      | 0 (-1, 1)         | 0 (-1, 3)          | 0.39      |
| Night                       | 0 (-1, 0)         | 0 (-1, 2)          | 0.03      | 0 (-1, 1)         | 0 (-1, 1)          | 0.79      |

#### Caveats

- Only patients with mild-moderate dehydration
- Delirium was a secondary outcome (floor effect)
- Patients with days-weeks of survival
- May need multi-model intervention

Bruera et al. J Clin Oncol 2013

### Multicomponent Intervention Delirium Prevention

Open label, matched cohort study



\* Four risk factors: visual impairment, severe illness, cognitive impairment, high BUN/Cr

- Intermediate risk: 1-2 risk factors
- High risk: 3-4 risk factors

# **Multicomponent Intervention**

#### **Delirium Prevention**

| Domain                  | Interventions                                                                                                                                                                                               |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Orientation<br>protocol | Board with names of care team members listed, communication to reorient to<br>surroundings<br>Therapeutic activities protocol TID, as tolerated; includes family involvement and<br>structured reminiscence |
| Sleep<br>protocol       | Warm drink at bedtime, relaxation music, unit-wide noise reduction strategies, schedule adjustments to allow sleep (rescheduling of vitals, medications, and procedures)                                    |
| Mobilization protocol   | Physical/occupational therapy assessment, minimal use of immobilizing equipment                                                                                                                             |
| Vision<br>protocol      | Visual aids (e.g., glasses or magnifying lenses), adaptive equipment (e.g., large illuminated telephone keypads) for patients with visual impairments, reinforcement of their use                           |
| Hearing<br>protocol     | Portable amplifying devices, special communication techniques for patients with hearing impairments, daily reinforcement of these adaptations                                                               |
| Dehydration<br>protocol | Early recognition of dehydration and volume repletion (e.g., encourage oral intake or parenteral hydration)                                                                                                 |

### Multicomponent Intervention Delirium Prevention

| OUTCOME                            | STUDY (         | Group           | STATISTICAL ANALYSIS |                     |  |
|------------------------------------|-----------------|-----------------|----------------------|---------------------|--|
|                                    | INTERVENTION    | USUAL CARE      | MATCHED              | UNMATCHED           |  |
| All matched patients (n=852)       |                 |                 |                      |                     |  |
| First episode of delirium — no. of | 42 (9.9)        | 64 (15.0)       | OR, 0.60 (95% CI,    | OR, 0.61 (95% CI,   |  |
| patients (%)                       |                 |                 | 0.39-0.92); P=0.02†  | 0.40-0.93); P=0.02‡ |  |
| Total days of delirium§            | 105             | 161             | P=0.02¶              |                     |  |
| No. of episodes of delirium        | 62              | 90              | P = 0.03¶            |                     |  |
| Patients with delirium (n=106)     |                 |                 | ~                    |                     |  |
| Mean ±SD delirium-severity score   | $3.85 \pm 1.27$ | $3.52 \pm 1.44$ |                      | P=0.25**            |  |
| Recurrence (two or more episodes)  | 13 (31.0)       | 17 (26.6)       |                      | P=0.62††            |  |
| — no. of patients (%)              |                 | , /             |                      |                     |  |

## **Delirium Prevention**

#### **Systematic Review and Metaanalysis**

• Multicomponent Intervention (RR 0.63, 95% CI 0.43-0.92)

| Study or subgroup                                                                                                                            | MCI                                                                        | Control                                       | Risk Ratio<br>M-   | Weight | Risk Ratio<br>M-    |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------|--------------------|--------|---------------------|
|                                                                                                                                              | n/N                                                                        | n/N                                           | H,Random,95%<br>Cl |        | H,Random,95%<br>Cl  |
| I Medical patients                                                                                                                           |                                                                            |                                               |                    |        |                     |
| Abizanda 2011                                                                                                                                | 27/186                                                                     | 39/184                                        | -                  | 12.8 % | 0.68 [ 0.44, 1.07 ] |
| Bonaventura 2007                                                                                                                             | 0/30                                                                       | 5/30                                          |                    | 0.3 %  | 0.09 [ 0.01, 1.57 ] |
| Jeffs 2013                                                                                                                                   | 15/305                                                                     | 21/343                                        | -                  | 6.1 %  | 0.80 [ 0.42, 1.53 ] |
| Martinez 2012                                                                                                                                | 8/144                                                                      | 19/143                                        |                    | 4.0 %  | 0.42 [ 0.19, 0.92 ] |
| <b>Subtotal (95% CI)</b><br>Total events: 50 (MCI), 84 (Cc<br>Heterogeneity: Tau <sup>2</sup> = 0.03; C<br>Test for overall effect: Z = 2.40 | <b>665</b><br>ontrol)<br>hi <sup>2</sup> = 3.53, df = 3 (<br>0 (P = 0.016) | <b>700</b><br>P = 0.32); I <sup>2</sup> = 15% | •                  | 23.3 % | 0.63 [ 0.43, 0.92 ] |

- Pharmacologic therapies (inadequate evidence)
  - Antipsychotics (RR 0.73, 95% CI 0.33-1.59)
    - Haloperidol (RR 1.05, 95% CI 0.69-1.60)
    - Olanzapine (RR 0.36, 95% CI 0.24-0.52)
  - Melatonin (RR 0.41 95% Cl 0.09-1.89)
  - Cholinesterase inhibitors (RR 0.68 95% CI 0.17-2.62)

#### Siddiqi et al. Cochrane Database 2016

### Multicomponent Intervention Delirium Treatment

#### 4 geriatric, unblinded randomized controlled trials

|                                            | Population                                                                                    | Intervention (vs.usual care)                                                                                                                                                                                                    | Outcome                                                                                                                                                                                                                                 | Comments                                                                  |
|--------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Cole et al.<br>CMAJ 1994                   | 88 pts with<br>delirium<br>Medical unit<br>Age 75 or older                                    | Consultation by geriatrician or psychiatrist<br>and followup by liaison nurse (environment,<br>orientation, familiarity, communication,<br>activities) during admission                                                         | Crichton Geriatric Behavioural Rating Scale (-8.1<br>vs3.5, P<0.05) over 8 wks<br>Short Portable Mental Status Questionnaire (-0.5<br>vs0.6, p=0.06)<br>No difference in restraints, length of stay,<br>discharge outcomes or mortality | Non-pharm on<br>delirium; mixed<br>findings and<br>limited<br>improvement |
| Cole et al.<br>CMAJ 2002                   | 227 pts with<br>delirium<br>Medical units<br>Age 65 or older                                  | Consultation by geriatrician or psychiatrist<br>and followup by liaison nurse (environment,<br>orientation, familiarity, communication,<br>activities) during admission                                                         | Time to improvement (HR 1.1, 95% 0.74-1.63)<br>Delirium improvement (48% vs. 45%)<br>No difference in Delirium Index score, Barthel<br>Index score, length of stay, discharge outcomes or<br>survival                                   | Non-pharm on<br>delirium; no<br>improvement                               |
| Lundstrom<br>et al. JAGS<br>2005           | 125 pts with<br>delirium<br>275 pts without<br>delirium<br>Medical service<br>Age 70 or older | 2 day course in geriatric medicine focusing<br>on delirium<br>Education concerning caregiver-patient<br>interaction<br>Reorganization of nursing care<br>Guidance for nursing staff once a month                                | Complete remission rate on day 7 (70% vs. 40%,<br>P=0.001)<br>Able to return to home (78% vs. 60%, P=0.05)<br>Length of stay (11 d vs. 21 d)<br>Lower mortality (3% vs. 14%, P=0.03)                                                    | Educational/<br>system change;<br>lots of<br>improvement                  |
| Pitkala et al.<br>J<br>Gerontology<br>2006 | 174 pts with<br>delirium<br>Medical<br>services<br>Age 69 or older                            | Comprehensive geriatric assessment at<br>baseline, avoid conventional neuroleptics,<br>orientation, physiotherapy, geriatric<br>interventions (nutrition supplements,<br>calcium, hip protectors), cholinesterase<br>inhibitors | Mortality at 1 year (61% vs. 64%, P=0.64)<br>Days in hospital (126 vs. 140, P=0.69)<br>Delirium MDAS improvement by day 8 (~50% vs.<br>~20%)<br>MMSE 6 months (8.4 vs. 15.8, P=0.047)<br>Barthel Index 6 months (70.2 vs. 63.8, P=0.14) | Non-pharm;<br>Delirium<br>secondary<br>endpoint and<br>positive           |

#### Ahraha et al. PLOS One 2015

### **Multicomponent Intervention**

#### **Take Home Message**



# **Delirium Management**

### **Setting Realistic Goals**



# **Pharmacologic Interventions**

#### **Delirium Prevention**

- Antipsychotics (RR 0.73, 95% Cl 0.33-1.59)
  - Haloperidol (RR 1.05, 95% CI 0.69-1.60)
  - Olanzapine (RR 0.36, 95% Cl 0.24-0.52)
- Melatonin (RR 0.41 95% CI 0.09-1.89)
- Cholinesterase inhibitors (RR 0.68 95% CI 0.17-2.62)

Siddiqi et al. Cochrane Database 2016

### Pharmacologic Interventions Delirium Prevention

- Antipsychotics for prevention of post-op delirium
  - 2 of 3 haloperidol trials +ve (Kaneko et al. 1999 ICU; Wang et al. 2012 ICU)
  - 2 of 2 risperidone trials +ve (Prakanrattana et al. 2007 ICU; Hakim et al. 2012 ICU)
  - 1 of 1 olanzapine trial +ve (Larsen et al. 2010 Geriatric)
- Cholinesterase inhibitors for prevention of post-op delirium
  - 0 of 3 donepezil trials +ve
  - 0 of 2 rivastigmine trials +ve

### Pharmacologic Interventions Delirium Treatment

- Antipsychotics for treatment of delirium
  - 0 of 1 haloperidol-placebo trial +ve (Girard et al. 2010 ICU)
  - 0 of 1 ziprasidone-placebo trial +ve (Girard et al. 2010 ICU)
  - 0 of 2 quetiapine-placebo trial +ve (Devlin et al. 2010, Tahir et al. 2010)
- Miscellaneous treatments
  - 0 of 1 melatonin trial +ve (Al Aama et al. 2011)
  - 0 of 1 ketamine trial +ve (Hudetz et al. 2009)

#### **Delirium Treatment**

#### Response rate at the study endpoint

|                                                                                                                                                      |                                                                                     | Risk Ratio                                                                                                      | Risk Ratio                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Study or Subgroup                                                                                                                                    | Weight M-I                                                                          | H, Random, 95% Cl                                                                                               | M-H, Random, 95% Cl                                           |
| 1.1.1 HAL vs PLA/UC<br>Hu 2004 HAL vs UC<br>Subtotal (95% CI)<br>Total events                                                                        | 37.8%<br>37.8%                                                                      | 0.18 [0.09, 0.35]<br>0.18 [0.09, 0.35]                                                                          | -                                                             |
| Heterogeneity: Not applical                                                                                                                          | ble                                                                                 |                                                                                                                 |                                                               |
| Test for overall effect: Z = 5.                                                                                                                      | .09 (P < 0.000                                                                      | 01)                                                                                                             |                                                               |
| 1.1.2 OLA vs PLA/UC<br>Hu 2004 OLA vs UC<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Not applical<br>Test for overall effect: Z = 4.      | 53.9%<br>53.9%<br>ble<br>.87 (P < 0.000                                             | 0.25 [0.15, 0.44]<br>0.25 [0.15, 0.44]<br>01)                                                                   | *                                                             |
| 1.1.3 QUE vs PLA/UC<br>Devlin 2010 QUE vs PLA<br>Subtotal (95% CI)<br>Total events<br>Heterogeneity: Not applicat<br>Test for overall effect: Z = 1. | 8.3%<br>8.3%<br>ble<br>.93 (P = 0.05)                                               | 0.25 [0.06, 1.02]<br>0.25 [0.06, 1.02]                                                                          |                                                               |
| Total (95% CI)<br>Total events<br>Heterogeneity: Tau <sup>2</sup> = 0.00;<br>Test for overall effect: Z = 7.<br>Test for subgroup differenc          | 100.0%<br>Chi <sup>2</sup> = 0.63, d<br>26 (P < 0.000<br>es: Chi <sup>2</sup> = 0.6 | 0.22 [0.15, 0.34]<br>If = 2 (P = 0.73);   <sup>2</sup> = 0%<br>01)<br>3. df = 2 (P = 0.73),   <sup>2</sup> = 0% | 0.01 0.1 1 10 100<br>Favours [experimental] Favours [control] |

#### Delirium severity scales scores on the endpoint



#### Conclusion

Our results suggested that antipsychotic medications were superior to PLA/UC in efficacy outcomes. Moreover, SGAs are more beneficial for the treatment of delirium regarding efficacy and safety outcomes compared with haloperidol. However, because the studies included in the meta-analysis were small, further study using larger samples is required.

#### Kishi et al. J Neurol Neurosurg Psychiatry 2016

#### **Delirium Prevention and Treatment**

#### 12 treatment trials: 10 RCTs, 5 had placebo 7 prevention trials: all post-operative setting

#### B Delirium Duration in Hospitalized Patients



#### c Delirium Severity in Hospitalized Patiens

|                                   | Antips   | ychot   | ics     | Co      | ontrol | 1                     | 3      | Std. Mean Difference | Std. Mean Difference               |
|-----------------------------------|----------|---------|---------|---------|--------|-----------------------|--------|----------------------|------------------------------------|
| Study or Subgroup                 | Mean     | SD      | Total   | Mean    | SD     | Total                 | Weight | IV, Random, 95% CI   | IV, Random, 95% CI                 |
| Breitbart 1996                    | 11.6     | 6.1     | 11      | 11.9    | 6.7    | 13                    | 8.0%   | -0.05 [-0.85, 0.76]  |                                    |
| Grover 2011                       | 10.1     | 6.4     | 10      | 11.7    | 7.2    | 21                    | 8.4%   | -0.22 [-0.98, 0.53]  |                                    |
| Grover 2011                       | 10.1     | 6.4     | 10      | 12      | 6.8    | 23                    | 8.5%   | -0.28 [-1.02, 0.47]  |                                    |
| Han 2004                          | 21.8     | 4.4     | 12      | 23.5    | 4.2    | 12                    | 7.9%   | -0.38 [-1.19, 0.43]  |                                    |
| Kalisvaart 2005                   | 14.4     | 3.4     | 32      | 18.4    | 4.3    | 36                    | 11.3%  | -1.01 [-1.52, -0.51] |                                    |
| Larsen 2010                       | 16.4     | 3.7     | 28      | 14.5    | 2.7    | 82                    | 12.1%  | 0.63 [0.20, 1.07]    |                                    |
| Maneeton 2013                     | -21.7    | 6.7     | 28      | -22.9   | 6.9    | 24                    | 10.8%  | 0.17 [-0.37, 0.72]   |                                    |
| Tahir 2010                        | 7.1      | 3.3     | 21      | 7.4     | 3.3    | 21                    | 10.1%  | -0.09 [-0.69, 0.52]  |                                    |
| Yoon 2013                         | 8.5      | 4.6     | 7       | 8.8     | 6      | 18                    | 7.3%   | -0.05 [-0.92, 0.82]  |                                    |
| Yoon 2013                         | 8.5      | 4.6     | 8       | 9.8     | 6.7    | 21                    | 7.8%   | -0.20 [-1.02, 0.61]  |                                    |
| Yoon 2013                         | 8.5      | 4.6     | 8       | 7.6     | 3.7    | 18                    | 7.7%   | 0.22 [-0.62, 1.05]   |                                    |
| Total (95% CI)                    |          |         | 175     |         |        | 289                   | 100.0% | -0.11 [-0.43, 0.22]  | +                                  |
| Heterogeneity: Tau <sup>2</sup> = | 0.18; Ch | i² = 25 | .55, df | = 10 (P | = 0.0  | 04); I <sup>2</sup> = | = 61%  | -                    |                                    |
| Test for overall effect:          | Z = 0.65 | (P = 0) | 52)     |         |        |                       |        |                      | Favor Antipsychotics Favor Control |

Neufeld et al. JAGS 2016

#### **Terminally III Patients**

[Intervention Review]

### Drug therapy for delirium in terminally ill adult patients

Bridget Candy<sup>1</sup>, Kenneth C Jackson<sup>2</sup>, Louise Jones<sup>1</sup>, Baptiste Leurent<sup>1</sup>, Adrian Tookman<sup>1</sup>, Michael King<sup>3</sup>

There is limited evidence from clinical trials on the role of drug therapy for the treatment of delirium in terminally ill patients. The key feature of delirium is a decreased level of consciousness (awareness). People may experience impaired memory, thinking and judgement, and become disorientated. They may experience distressing hallucinations or delusions. It occurs frequently in patients with terminal illness, and may be caused by the illness itself or occur as a side effect of drug treatments for symptom management. Our search of the international literature for trials of drug therapies for the treatment of delirium in patients with terminal illness yielded one small study, and therefore it was not possible to assess the effectiveness of drug treatment options. It is hoped that this review will provide an incentive for further research.

#### Candy et al. Cochrane Database 2012

### **Are You Confused Yet?**



# **Delirium Literature**

### It is Confusing!

- Different patient populations and settings
- Different doses and dosing schedules
- Different comparison arms
- Different outcome measures (variable degree of validation)
- Different systematic reviews included different studies
- Different quality of studies
- Different languages

**Result: Different opinions!** 



# Benzodiazepines

### **Delirium Treatment**

No adequately controlled trials could be found to support the use of benzodiazepines in the treatment of non-alcohol withdrawal related delirium among hospitalised patients, and at this time benzodiazepines cannot be recommended for the control of this condition. Because of the scarcity of trials with randomization of patients, placebo control, and adequate concealment of allocation of subjects, it is clear that further research is required to determine the role of benzodiazepines in the treatment of non-alcohol withdrawal related delirium.

- Pandharipande et al. JAMA 2017
  - Dexmedetomidine vs. lorazepam
  - Only study included in systematic review
- Breitbart et al. Am J Psych 1996
  - Haloperidol vs. chlorpromazine vs. lorazepam
  - Not included as lorazepam arm terminated early
- Christensen et al. JAGS 1998
  - Haloperidol vs. alprazolam
  - Not included because mixed dementia/delirium/amnesic/cognitive disorder

Lonergen et al. Cochrane 2009

Double-blind, randomized controlled trial



#### Outcomes

- Delirium Rating Scale
- Mini-Mental State Examination
- Extrapyramidal Symptom Rating Scale
- Other Side Effects
- Karnofsky Performance Status
- Medical Status Profile

Breitbart et al. Am J Psychiatry 1996

|            |      | Dose (mg/hour) |      |               |           |               |  |  |  |  |  |  |  |
|------------|------|----------------|------|---------------|-----------|---------------|--|--|--|--|--|--|--|
|            | H    | laloperidol    | Chl  | orpromazine   | Lorazepam |               |  |  |  |  |  |  |  |
| Dose Level | Oral | Intramuscular  | Oral | Intramuscular | Oral      | Intramuscular |  |  |  |  |  |  |  |
| 1          | 0.25 | 0.125          | 10   | 5             | 0.50      | 0.20          |  |  |  |  |  |  |  |
| 2          | 0.50 | 0.50           | 20   | 10            | 1.00      | 0.50          |  |  |  |  |  |  |  |
| 3          | 1.00 | 0.50           | 40   | 20            | 1.50      | 0.70          |  |  |  |  |  |  |  |
| 4          | 2.00 | 1.00           | 80   | 40            | 2.00      | 1.00          |  |  |  |  |  |  |  |
| 5          | 2.50 | 1.50           | 100  | 50            | 2.50      | 1.25          |  |  |  |  |  |  |  |
| 6          | 2.50 | 1.50           | 100  | 50            | 2.50      | 1.25          |  |  |  |  |  |  |  |
| 7          | 2.50 | 1.50           | 100  | 50            | 2.50      | 1.25          |  |  |  |  |  |  |  |
| 8          | 5.00 | 3.00           | 200  | 100           | 4.00      | 2.00          |  |  |  |  |  |  |  |
| 9          | 5.00 | 3.00           | 200  | 100           | 4.00      | 2.00          |  |  |  |  |  |  |  |

TABLE 1 Drug Docing Protocol for Treatment of Delirium in Hospitalized AIDS Patients

- Mean drug doses in first 24 h
  - Haloperidol 3.8 (2.4) mg
  - Chlorpromazine 50 (23.1) mg
  - Lorazepam 3 (3.6) mg
- Mean maintenance drug doses
  - Haloperidol 1.4 (1.2) mg
  - Chlorpromazine 36 (18.4) mg
  - Lorazepam 4.6 (4.7) mg

Day 1: Increase dose to next level every hour if DRS >13 Day 2-6: Give total dose from day 1, div BID



- Improvement seen within 24 hours of treatment in haloperidol and chlorpromazine arms
- All 6 patients on lorazepam arm developed treatment limiting side effects (sedation, disinhibition, ataxia, increased confusion)

Breitbart et al. Am J Psychiatry 1996

- Strengths
  - First delirium study in palliative care setting
  - Rapid titration to identify optimal doses
- Limitations
  - No placebo group
  - Small sample size
  - Intensive titration schedule
  - Lorazepam arm terminated early (n=6)

Main implication: Neuroleptics are superior to benzodiazepine for delirium in the palliative care setting

### **Risperidone vs. Haloperidol vs. Placebo** Palliative Care, Front Line

Double-blind, randomized controlled trial



#### Outcomes

- Primary: NuDesc inappropriate behaviour, inappropriate communication, illusions/hallucinations at 72 h
- Patient/caregiver/health professional rated distress
- Dosage or length of administration
- Toxicity (extrapyramidal effects, sedation)
- Pathophysiologic correlates (S100B, cytochrome C, caspase 3, neuron specific enolase)

#### Agar et al. JAMA Intern Med 2017

# Risperidone vs. Haloperidol vs. Placebo

Palliative Care, Front Line

|                        | Risperidone vs. P  | lacebo  | Haloperidol vs. Placebo |         |  |
|------------------------|--------------------|---------|-------------------------|---------|--|
|                        | Effect (95% CI)    | P-value | Effect (95% CI)         | P-value |  |
| Delirium symptoms      | 0.48 (0.09, 0.86)  | 0.02    | 0.24 (0.06, 0.42)       | 0.009   |  |
| MDAS scores/day        | 0.96 (0.16, 1.77)  | <0.001  | 0.76 (-0.03, 1.51)      | 0.06    |  |
| RASS/day               | -0.05 (-0.19-0.09) | 0.52    | -0.14 (-0.28, 0)        | 0.048   |  |
| Extrapyramidal effects | 0.73 (0.09, 1.37)  | 0.03    | 0.79 (0.17, 1.41)       | 0.01    |  |
| Overall survival (HR)  | 1.29 (0.91, 1.84)  | 0.14    | 1.73 ( 1.20, 2.50)      | 0.003   |  |
| Median survival        | 17 d vs. 26 d      |         | 16 d vs. 26 d           |         |  |

Agar et al. JAMA Intern Med 2017

# Risperidone vs. Haloperidol vs. Placebo

### Palliative Care, Front Line

- Midazolam use (placebo vs. neuroleptics)
  - Day 1: 13/75 (17%) vs. 50/144 (35%), P=0.007
  - Day 2: 11/68 (17%) vs. 40/121 (33%), P=0.01
  - Day 3: 9/66 (14%) vs. 32/108 (30%), P=0.02
- Midazolam dose/day (among pts who got it)
  - Placebo: median 2.5 mg (2.5-5.0 mg)
  - Risperidone: median 2.5 mg (2.5-5.0 mg)
  - Haloperidol: median 4 mg (2.5-5.0 mg)

### Implications:

- 1. Neuroleptics are inferior to placebo for delirium in the palliative care setting
- 2. Benzodiazepines alone may be considered for rescue

#### Agar et al. JAMA Intern Med 2017

# **Risperidone vs. Haloperidol vs. Placebo**

### **Palliative Care, Front Line**

- Primary outcome
  - Has not been validated
  - Observed difference statistically significant but clinical significant unknown
    Patient population
- Patient population
  - Relatively low MDAS scores (needian 13.7-15.1 placebo best)
  - Did not exclude demetra patients
- Adverse effectsore
  - Despite very small doses for short duration (72 h)
  - Secondary outcomes = hypothesis generating only

Hui et al. JAMA Intern Med 2017 (in press)



### How about agitation...



RASS +1 Restless

RASS +2 Agitated

RASS +3 Aggressive

### **Palliative Care, Persistent Agitation**

- Double-blind, randomized controlled trial
- Single dose instead of repeated dosing
  - Short survival (i.e. hours to days)
  - Uncertain risks associated with lorazepam in a frail population



- Study outcomes:
  - Richmond Agitation Sedation Scale (1°)
  - Use any additional psychotropic agents
  - Perceived patient comfort
  - MDAS, ESAS, DEQ
  - Communication capacity
  - Adverse effects
  - Discharge outcomes, survival

### **Palliative Care, Persistent Agitation**

- Lorazepam/haloperidol was associated with a significantly greater reduction of RASS compared to placebo
  - 0-30 min: mean  $\Delta$  -2.0, 95% CI -2.9, -1.1, P<0.001
  - 0-8 h: mean  $\Delta$  -1.9, 95% CI -2.8, -0.9, P<0.001



### $\textbf{Haloperidol} \pm \textbf{Lorazepam}$

#### **Palliative Care, Persistent Agitation**

Placebo + Haloperidol



#### **Palliative Care, Persistent Agitation**

Lorazepam + Haloperidol



### **Palliative Care, Persistent Agitation**

| Neuroleptic use during the first 8 hours      | Lorazepam +    | Placebo +      | Difference              | P-    |
|-----------------------------------------------|----------------|----------------|-------------------------|-------|
|                                               | Haloperidol    | Haloperidol    | between arms            | value |
|                                               | (n=29)         | (n=29)         | (95% CI)                |       |
| Scheduled HEDD, median (IQR), mg              | 2.0 (2.0, 4.0) | 2.0 (2.0, 4.0) | -0.1 (-0.9, 0.6)        | 0.68  |
| Rescue HEDD, median (IQR), mg                 | 2.0 (2.0, 2.0) | 4.0 (2.0, 5.0) | -2.2 (-3.8, -0.5)       | 0.009 |
| Total HEDD, median (IQR), mg                  | 6.0 (4.0, 6.0) | 6.0 (4.0, 8.0) | -2.3 (-4.2, -0.5)       | 0.03  |
| Number of rescue doses, median (IQR), mg      | 1.0 (1.0, 1.0) | 2.0 (1.0, 2.0) | -0.9 (-1.6, -0.2)       | 0.008 |
| Need for chlorpromazine during first 8 hours, | 2/29 (6.9%)    | 4/29 (13.8%)   | -0.1 (-0.3, 0.2)        | 0.67  |
| No./total No. of observations (%)             |                |                |                         |       |
| Change in MDAS, mean (SD)                     | 2.5 (4.5)      | 0.4 (6.2)      | 2.1 (-1.0, 5.2)         | 0.18  |
| Change in Edmonton Symptom Assessment         |                |                |                         |       |
| Scale, mean (SD)                              |                |                |                         |       |
| Pain                                          | -2.4 (2.7)     | -1.7 (4.2)     | -0.7 (-3.6, 2.2)        | 0.67  |
| Fatigue                                       | 0.1 (1.9)      | -1.8 (3.2)     | 1.9 (-0.7 <i>,</i> 4.5) | 0.23  |
| Nausea                                        | -0.7 (3.4)     | -2.7 (3.9)     | 2.0 (-1.7, 5.7)         | 0.49  |
| Depression                                    | -1.4 (4.0)     | 0.2 (2.9)      | -1.6 (-5.3, 2.2)        | 0.56  |
| Anxiety                                       | -3.4 (3.8)     | -2.1 (4.7)     | -1.3 (-5.0, 2.4)        | 0.55  |
| Drowsiness                                    | 1.9 (3.5)      | -2.0 (3.1)     | 3.9 (0.8, 7.1)          | 0.03  |
| Shortness of Breath                           | -1.0 (2.2)     | -0.4 (4.5)     | -0.6 (-3.3, 2.2)        | 0.41  |
| Appetite                                      | 0.6 (1.6)      | 2.1 (3.2)      | -1.5 (-3.6, 0.6)        | 0.26  |
| Sleep                                         | -2.9 (3.8)     | -2.4 (3.8)     | -0.5 (-4.0, 3.1)        | 0.74  |
| Feeling of Well-being                         | -2.3 (3.3)     | -1.5 (3.3)     | -0.8 (-4.2, 2.6)        | 0.51  |

#### **Palliative Care, Persistent Agitation**

Patients on lorazepam/haloperidol arm were perceived to be more comfortable after the study medication by *blinded* caregivers and nurses



#### **Palliative Care, Persistent Agitation**

- No significant difference in
  - Delirium recall
  - Communication capacity
  - Adverse effects
  - Discharge outcomes
  - Overall survival



**Palliative Care, Persistent Agitation** 

- Lorazepam and haloperidol, given to the *right* individuals for the *right* reason at the *right* time, may reduce agitation and search is Needed improve comfort.
- Limitations:
  - Single center stud
  - Small study not powered examine secondary outcomes
  - Only examined Dangle close of lorazepam (3 mg)
- Further research is needed to examine the role of benzodiazepines and neuroleptics in delirium management.

# **Placebo-Controlled Trials**

### **Delirium Treatment**

| Agents      | ICU                       | Medical/Surgical           | Palliative Care           |
|-------------|---------------------------|----------------------------|---------------------------|
| Haloperidol | Girard Crit Care Med 2010 |                            | Agar JAMA Intern Med 2017 |
| Risperidone |                           |                            | Agar JAMA Intern Med 2017 |
| Ziprasidone | Girard Crit Care Med 2010 |                            |                           |
| Quetiapine  | Devlin Crit Care Med 2010 | Tahir J Psychosom Res 2010 |                           |
| Olanzapine  |                           |                            |                           |
| Lorazepam   |                           |                            | Hui (submitted)           |
| Midazolam   |                           |                            |                           |

### **Pharmacologic Therapies**

#### **Take Home Message**

#### **Neuroleptics**

#### **Benzodiazepines**



**Prevention:** Mixed evidence **Treatment:** Limited evidence; however, *may be* considered for selected patients given limited options **Prevention:** No evidence **Treatment:** Some evidence for agitation control; use with great caution

# **Neuroleptic Rotation**

#### **Palliative Care, Persistent Agitation**



#### Shin et al. Cancer Treat Res 2015

### **Impact on Delirium Recall and Related Distress**



### **Impact on Delirium-Related Distress**

|                           |        | Patients                           | Caregivers                         | Nurses                             | PC specialists                      |
|---------------------------|--------|------------------------------------|------------------------------------|------------------------------------|-------------------------------------|
| Disorientation to place   | H<br>L | 2.6 (N=36)<br>1.8 (N=48)<br>p=0.48 | 2.0 (N=55)<br>2.8 (N=35)<br>p=0.24 | 7.0 (N=8)<br>2.5 (N=65)<br>p=0.002 | 3.3 (N=13)<br>2.0 (N=76)<br>p=0.32  |
| Disorientation<br>to time | H<br>L | 2.5 (N=40)<br>2.7 (N=45)<br>p=0.94 | 1.8 (N=52)<br>3.0 (N=41)<br>p=0.54 | 7.0 (N=6)<br>2.5 (N=69)<br>p=0.008 | 3.7 (N=16)<br>2.0 (N=75)<br>p=0.18  |
| Hallucinations            | H<br>L | 3.5 (N=33)<br>2.0 (N=47)<br>p=0.30 | 3.2 (N=47)<br>1.7 (N=43)<br>p=0.14 | 4.6 (N=6)<br>2.5 (N=63)<br>p=0.20  | 7.5 (N=10)<br>2.0 (N=79)<br>p=0.006 |
| Delusions                 | H<br>L | 2.5 (N=23)<br>2.5 (N=57)<br>p=0.90 | 1.8 (N=36)<br>2.8 (N=49)<br>p=0.52 | 4.3 (N=7)<br>2.3 (N=64)<br>p=0.041 | 4.0 (N=9)<br>2.0 (N=80)<br>p=0.75   |
| Agitation                 | H<br>L | 2.5 (N=45)<br>1.8 (N=40)<br>p=0.27 | 2.5 (N=69)<br>1.6 (N=22)<br>p=0.36 | 6 (N=11)<br>1.9 (N=62)<br>p<0.001  | 4.3 (N=23)<br>1.9 (N=69)<br>p=0.006 |

#### Hui et al. J Pain Symp Manage 2010

## **Delirium Treatment**

#### Implications

•

٠

٠



**RNs and PC specialists** 

### **Treatment of Delirium**

#### **NCCN Clinical Practice Guideline**



#### Dans et al. NCCN Palliative Care v1.2017

# **Delirium Literature**

### **More Research is Needed**

- Better understanding of pathophysiology
  - Classify subtypes
  - Identify novel interventions
- More validated outcomes are needed
  - Appropriate outcome based on goals of care
  - Minimal clinically important difference
- Interventions
  - Dose-finding studies
  - Multimodal interventions
- Control arms
  - Placebos are needed
- More adequately powered studies needed
  - Homogeneous populations
  - We need funding and collaborations



# Summary

- Think Delirium!
  - Routine screening
  - Match setting with goals of care
- Prevention
  - Treat potential contributors of delirium (if any)
  - Multicomponent intervention high quality evidence in most settings
  - Pharmacologic therapy nothing definitive yet!
- Treatment
  - Treat reversible causes (up to 50% even in palliative care setting)
  - Non-pharmacologic approaches limited evidence but limited harm
  - Neuroleptics consider for agitation, optimal dose undefined
  - Benzodiazepines consider for agitation, optimal dose undefined
  - Dexmedetomidine limited to intensive care

### **Summary**

### **Delirium Management by Setting**

|                                             | <b>Post-Op</b><br>(months-years) | <b>Medical</b><br>(weeks-months) | Palliative Care<br>(days-weeks) |
|---------------------------------------------|----------------------------------|----------------------------------|---------------------------------|
| Prevention of delirium                      | Multi-<br>component              | Multi-<br>component              | ?Multi-<br>component            |
| Reversal of delirium                        | Treat etiology                   | Treat etiology                   | Treat etiology                  |
| Palliation of delirium symptoms (agitation) |                                  | ?Neuroleptics                    | ?Neuroleptics<br>?Benzos        |
| Reduce delirium related<br>distress         |                                  |                                  | ??Neuroleptics<br>??Benzos      |

## ありがとうございます

#### **MDA Palliative Care**

- Dr. Eduardo Bruera
- Dr. Joseph Arthur \_
- Dr. Ashan Azhar
- Dr. Shalini Dalal
- Dr. Maxine De La Cruz
- Dr. Marvin Delgado Guay
- Dr. Rony Dev
- Dr. Daniel Epner \_
- Dr. Ali Haider \_
- Dr. Kevin Madden
- Dr. Akhila Reddy
- Dr. Suresh Reddy
- Dr. Kimberson Tanco
- Dr. Marieberta Vidal
- Dr. Paul Walker
- Dr. Angelique Wong
- Dr. Sriram Yennu
- Dr. Donna Zhukovsky

#### PC Research Team

- Susan Frisbee Hume
- Kelly Kilgore
- Hilda Rofheart
- Swati Bansal
- Nancy Shinn
- Helen House
- Charles J Masino
- Jewel Ochoa
- Kresnier Perez Zapata
- Vera De La Cruz
- Janet Williams
- Julio Allo
- **Yvette Ross** \_

- **MDA** Collaborators
  - Thoracic Med Onc (Dr. Anne Tsao, Dr. Fossella, Dr. Katherine Pisters)
  - Pulmonary Medicine (Dr. Dave Balachandran, Dr. George Eapen)
  - Cardiology (Dr. Juan Lepez-Mattei, Dr. Kara Thompson)
  - Leukemia (Dr. Jorge Cortes)
  - PROSPR (Dr. Basen Engquist, Carol Harrison)
- **Biostatistics** 
  - Dr. Kenneth Hess
  - Diane Liu
  - Minjeong Park
- Acute Palliative Care Unit Nursing
  - Annie Wilson \_
  - Thuc Nguyen
  - Stacy Hall
  - **Ylaine Ong Gabat** \_
  - Leela Kuriakose
  - Kristy Rofheart
  - **Ruben Rivera**
  - Yu Hu
  - Chanelle Clerc
  - Jian Zhu -
  - Sally Xu
  - Vienna Vivares
  - Jeane Rummel
  - Annie Gaskin

- National/International Collaborators
  - Dr. Omar Shamieh (Jordan)
  - Dr. Odai Kamesh (Jordan)
  - Dr. Carlos Paiva (Brazil)
  - Dr. Renata dos Santos (Brazil)
  - Dr. Maria Salete Angelis (Brazil)
  - Natalia Campacci (Brazil)
  - Camila Crovador (Brazil)
  - Dr. Jung Hye Kwon (Korea) Dr. Jung Hun Kang (Korea) -

  - Dr. Seong Hoon Shin (Korea)
  - Dr. Pedro Perez Cruz (Chile)
  - Dr. Mary Ann Muckaden (India) \_
  - Dr. Florian Strasser (Swiss)
  - Dr. Nathan Cherny (Israel)
  - Dr. Wadih Rhondali (France)
  - Dr. Bill Brietbart (MSK)
  - Dr. Donald Mahler (Dartmouth) \_
- **Funding Support** 
  - American Cancer Society \_
  - National Cancer Institute \_
  - MD Anderson IRG
  - Sabin Family Fellowship Grant
  - **MD** Anderson Startup Fund \_
  - Sister Network Institution Fund \_
  - **Helsinn Therapeutics Inc** -
  - **Depomed Pharmaceutical** —
  - **Teva Pharmaceutical Industries**
  - Insys Therapeutics Inc.