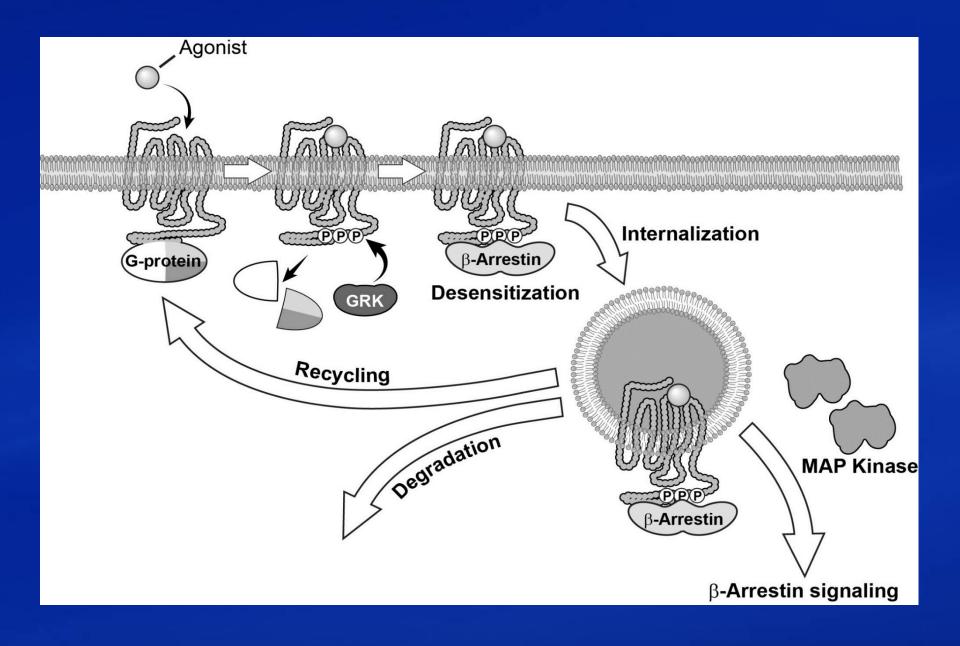
Opioid Combinations, Multi-Receptor Approaches to Analgesia

Mellar P Davis MD FCCP FAAHPM Geisinger Medical Center

Introduction

- Single opioid analgesics are modestly effective but have a narrow therapeutic index
- NNT is 3 for the most potent opioids
- Opioids produce analgesia through interactions with three major GPCRs: μ, d and k
- Multiple distinct opioid receptor subtypes have been described


Individual Receptors

Analgesia occurs whether activating mu, kappa, delta and nociceptin (NOP) receptors
 Each have unique side effects

 -mu- respiratory depression, constipation
 -kappa-dysphoria, diuresis
 -delta-seizures

Individual Benefits

- Kappa- blocks opioid and renal failure related pruritus, no respiratory depression
- Delta- lack of physical dependence, anxiolytic and antidepressant effect

Receptor Subtypes

- A single μ receptor gene generates multiple μ receptor subtypes through splicing of mRNA derived from the four major exons (7TM,6TM and 1TM)
- Opioids from different classes produce different physiologic effects through unique conformational receptor changes

Complexities in Analgesic Designs

- Multiple neurotransmitters and receptors in the pain pathway
- Pleiotropic functions of any single receptor and transmitter which dictate "lateral" benefits (dyspnea) and emerging toxicity (constipation)
- Receptor intrinsic efficacy and biased signaling between G-proteins, beta-arrestin, kinases
- Allosteric modulator (receptor "facilitator" without activating the receptor) or orthosteric activator
- Heterodimer interactions

Complexities in Analgesic Designs

- Receptor subtypes-Mu 7-TM, 6-TM, kappa 1-3
- Solubility and penetration into the CNS
- Bioavailability

Gunther T 2017

Circumventing Opioid Side Effects

- Targeting opioid receptor subtypes-IBNtxA and 6-TM receptors
- Bias signaling to G-protein signaling- triazole analogues and kappa receptors

Lu Z 2015 Wieskopf J 2014 Lovell K 2015

Selective Biased Signaling Opioid ; TRV-130

Background TRV-130

- Morphine analgesia is enhanced by knockdown of beta-arrestin
- Morphine respiratory depression and constipation are reduced by beta-arrestin knock
- Beta-arrestin negatively modulates analgesia and positively modulates respiratory depression and constipation

TRV-130

- Biased ligand which activates G-proteins and fails to activate beta-arrestin
- Stabilizes the mu receptor conformation which favors G-protein signaling and minimizes betaarrestin / receptor interactions

TRV-130 Preclinical

- 400-fold mu receptor selectivity vs. kappa and delta receptors
- 10-fold more potent analgesic in mouse models than morphine
- Quicker onset to analgesia
- Equianalgesic doses with morphine produces much less respiratory depression than morphine
- Respiratory depression (severe) not seen at 8-fold equianalgesic doses
- Less adverse effect on GI transit

TRV-130 Clinical

- Healthy volunteers
- Compared to morphine 10mg IV
- TRV-130-3 and 4.5mg
- TRV-130 had greater analgesia
- TRV-130 had less adverse effect on respiratory drive
- Less nausea with TRV-130

Soergel D. Pain 2014

Heterodimers

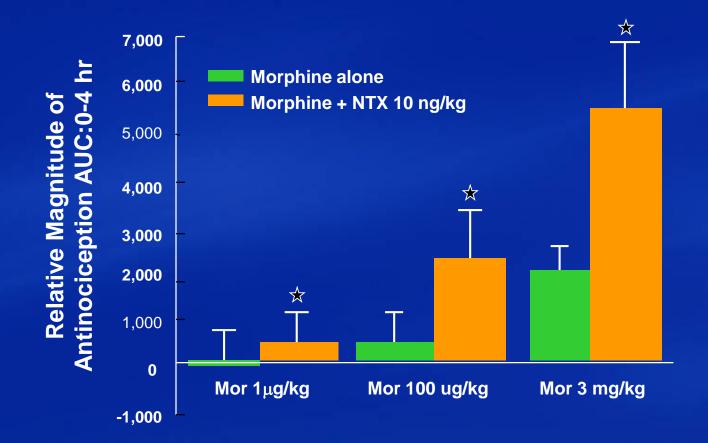
- Spontaneously arise
- Dictate trafficking
- Changes G-protein signaling, change in bias signaling
- Alter the pharmacologic properties on individual monomers

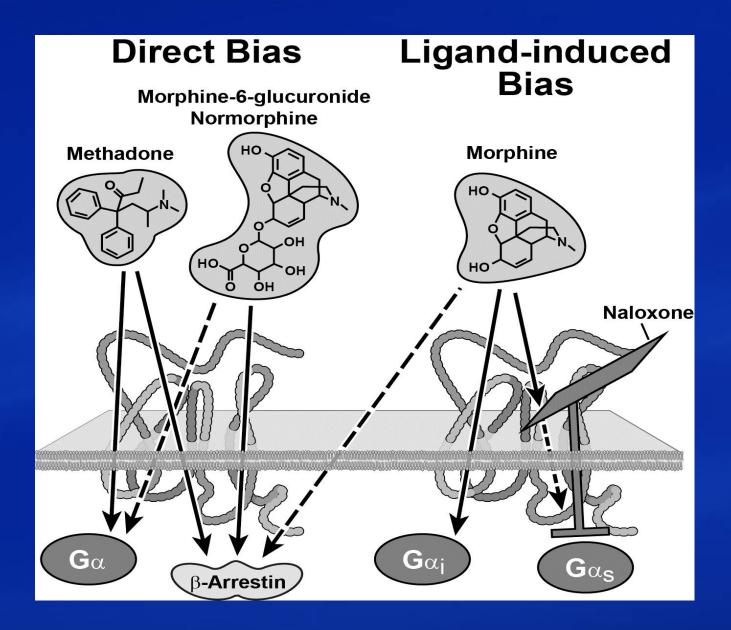
Approaches to Targeting Multiple Receptors

Drug cocktails

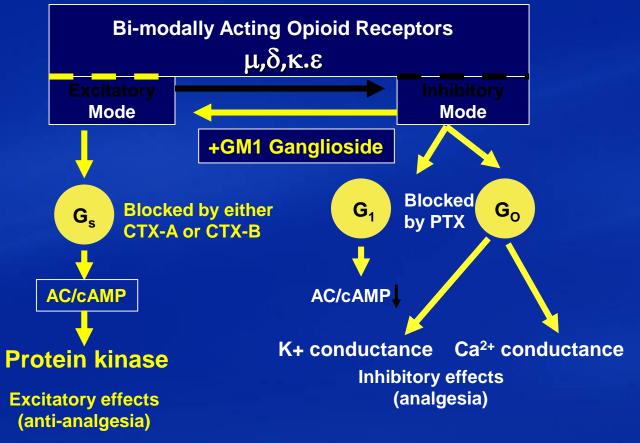
- Multiple ligands with a linker designed for heterodimers
- Single chemical entity which binds distinct receptors such as buprenorphine (Mu/NOP), nalbuphine (Mu antagonist/Kappa agonist)
- Single chemical entity which binds opioid receptor to transporter (tapentadol, tramadol)

Mu and Delta Agonist


- Targets inflammatory and neuropathic pain more than acute pain due to progressive dimer formation
- Lowers morphine analgesic tolerance
- Antidepressant activity


Cahill C 2003 Balboni G 2010

Agonist and Antagonist Combinations


Agonist and Antagonist Combinations; Preclinical

Premedication with ultra-low dose naloxone prior to morphine causes a left-shift morphine response in animal models

Bi-modal Opioid Modulation with Dose

Mu Agonist and Antagonist Combinations

- There may be a concern about the risk for addiction with combinations of agonists and antagonists
- Ultra-low dose naltrexone with morphine increases <u>conditioned place preference</u> compared with morphine alone in one animal study

Mu Agonist Delta Antagonist

- Ultra-low dose delta receptor antagonist plus µ receptor agonist augments antinociception and reduces physical dependence in animal models
- Synergy is selective; only certain delta receptor antagonists improve morphine antinociception
- A delta receptor antagonist such as naltrindole with morphine prevents dimer destruction

Mu Agonist Delta Antagonist

- Antinociceptive synergy between µ agonists and delta antagonists are reported in animal models; the delta receptor does not need to be activated (MDAN-oxymorphone/naltrinadole)
- Combinations cause a dose-dependent left-shift in response curves

Mu Agonist Delta Antagonist: Preclinical

- Concentrations of delta antagonists at the receptor site is critical to synergy
- Bimodal cooperation between ligands occurs with low doses of delta antagonists and is lost at higher doses
- Barrier to clinical development

Kappa Agonist / Mu Antagonists

Nalbuphine

Reverses respiratory depression of both IV and spinal opioids

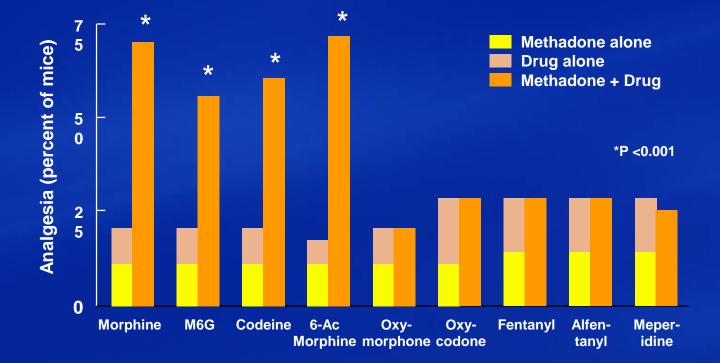
3 mg blocks pruritus from spinal morphine

Moldenhauer C 1985 Penning J 1988 Somrat C 1999

Comparisons of Nalbuphine with Morphine for Analgesic Effects and Safety: Metaanalysis of Randomized Controlled Trials

Zeng and colleagues Scientific Report 2015

Nalbuphine vs. Morphine


- 10 moderate to high quality trials
- 620 patients
- Bayesian analysis using credible intervals
- Pain relief; 1.1 (95% CI 0.67-1.63)
- Results confirmed on sensitivity analysis

Nalbuphine vs Morphine Safety

- Nausea RR 0.78 (95% CI 0.6-0.99)
- Vomiting RR 0.65 (95%CI 0.5-0.85)
- Pruritus 0.17 (95% CI 0.09-0.34)
- Respiratory depression 0.27 (95% CI 0.12-0.57)
- No significant steady heterogeneity

Zeng 2015

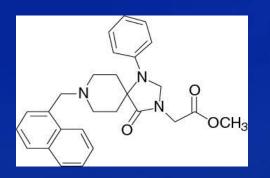
Morphine and Methadone

Methadone as a Co-analgesic: Systematic Review

Adverse affects with the combination

- 90% had adverse reactions
- Drowsiness 50%
- Confusion 27%
- Nausea 20%
- Myoclonus 16%

Missing data, attrition and no randomized trials


Courtemanche F 2016

Nociceptin Mu Bifunctional Ligands

Nociceptin

- Spinal analgesia but by ICV route hyperalgesia
- Low dose-anti-opioid and hyperalgesia
- High dose-analgesia
- Targets chronic neuropathic pain > acute nociceptive pain

Cebranopadol

- Full mu agonist, nearly full kappa agonist, NOP agonist
- Broad analgesic activity in animal modelsacute, inflammatory, neuropathic and cancer pain
- Reduced motor and respiratory toxicity even at high doses
- Better tolerated than other opioids
- In phase III trials

Linz K 2014 Rizzi A 2016

Rationale for Mu Agonist NOP Antagonist

- Prolong mu agonist exposure upregulates substance P and NOP receptors leading to analgesic tolerance
- NOP receptor antagonist reduces substance P and pain in neuropathic animals treated with morphine

Longmore J 1997 Gonzalez M 2000

KGNOP1- Mu Agonist NOP Antagonist

- Reduced neuropathic hyperalgesia 4000-fold greater than tramadol and 35-fold greater than morphine in animals
- Anti-neuropathic pain/antinociceptive to respiratory effects revealed that KGNOP1 was safer than tramadol (ED50 ratio: 5.44 X 10⁻³ vs 0.24) and morphine (ED50 ratio: 0.72 vs 1.39)

Lagard C 2017

Summary

- It is unlikely that combining commercially available opioids in combination will have a major clinical outcome
- Advancement in basic opioid pharmacology has lead to important avenues to analgesic development
- Targeting certain opioid receptor subtypes, developing G-protein biased opioid ligands and development of multitargeted analgesics may improve the therapeutic index of standard opioids.

Opioid Induced Hyperalgesia

Mellar P Davis MD, FCCP, FAAHPM

Introduction

- Repeated administration of morphine in
 - Animals causes physical tolerance, dependence and neuropathic hyperalgesia
- Relationship between pain intolerance and the rewarding effects of opioids
- Nature versus nurture
 - Conditioned response
 - Genetic predisposition

Mao J., 1995 Frischknecht H., 1988 Elmer G., 1995, 1998

Opioid Induced Hyperalgesia (OIH)

- 1. How consistently does OIH occur?
- 2. Is OIH modality (pain) specific?
- 3. Is OIH opioid specific or duration related?
- 4. Is there an association between OIH and opioid analgesic tolerance?
- 5. Is OIH a laboratory finding or doesn't have clinical relevance?
- 6. Is there an association between OIH and gender, age or addiction?

Terms

Detection of Stimuli Pain thresholds Pain tolerance-duration Unpleasantness Temporal summation Conditioned pain modulation

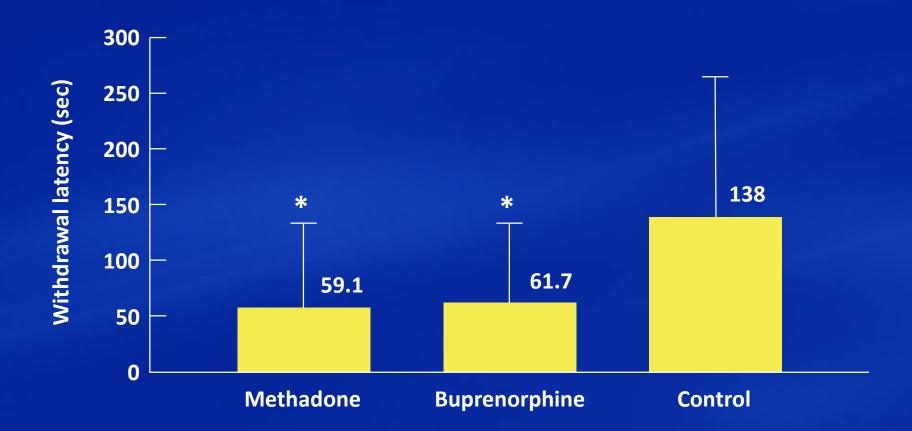
Quantitative Testing

Heat threshold Cold threshold Thermal pain Cold pressor tolerance Electrical stimulation pain Punctate mechanical pain Pressure pain Change from thermal thresholds to thermal pain Wind up – temporal summation Conditioned pain modulation Pain and unpleasantness to local anesthetics

GAPs in Understanding

- Studies used difference quantitative sensory testing
- Heterogeneous populations
 - Maintenance therapy
 - Chronic pain
 - Post operative pain
 - Cancer pain
- Different opioids, doses and adjuvants
- Chronic pain and addiction may be associated with pain sensitivity, pain tolerance or unpleasantness
- Timing of testing to opioid dose

Mechanisms

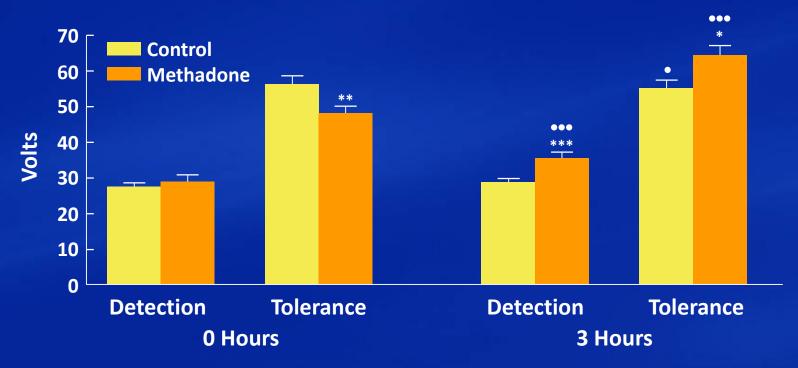

- Upregulation of NMDA receptors and neurotransmission
- Upregulation of substance P and CGRP
- Upregulation of CCK within the rostroventromedial medulla
- Upregulation of spinal dynorphin
- Reduced modulation of pain through subnucleus reticularis dorsalis and CPM (DNIC)
- Upregulation of 6-transmembrane mu receptors

Cold Pressor Pain

Pain Intolerance in Opioid Maintained former Opiate Addicts: Effect of Long-Acting Maintenance Agent

> Peggy Compton, V.C. Charuvastra, Walter Ling Drug and Alcohol Dependence 2001; 63:139-146

Design:	3-group matching	
Patients:	Methadone, buprenorphine, maintained addicts	
Controls:	Community matched controls	
Intervention:	Cold pressor tolerance	
Outcome:	Cold tolerance	


Cold-pressor withdrawal latency in long-acting opioid-maintained former opioid addicts and matched controls. Each bar (and bracket) represents mean value (and SD) for the subjects derived from three testing sessions. Asterisk indicates significant (P < 0.05) difference from the control group.

Hyperalgesic Responses in Methadone Maintenance Patients

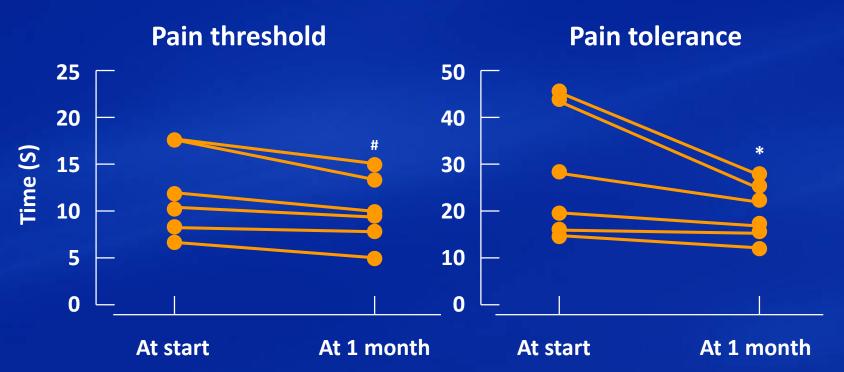
Mark Doverty, Jason White, Andrew Somogyi, et al. *Pain* 2001; 90:91-96

Design: 2 matched cohort Methadone, maintained addicts Patients: Controls: Matched healthy individuals Electrical stimulation pain, Intervention: cold pressor test, methadone concentrations Pain tolerance and pain detection **Outcome:** (ratios)

Electrical Stimulation

Comparison of mean (+SEM) pain detection and pain tolerance values at 0 and 3 h in 16 methadone maintenance patients and 16 matched controls. Methadone vs controls: 0 h, detection P = 0.744, tolerance **P = 0.013; 3 h, detection ***P = 0.002, tolerance *P = 0.015, 0 vs 3 h; methadone, detection ***P < 0.0001, tolerance *P < 0.0001; controls, detection P = 0.096, tolerance, *P = 0.018.

Cold Pressor Test


Comparison of mean (+SEM) pain detection and pain tolerance values at 0 and 3 h in 16 methadone maintenance patients and 16 matched controls. Methadone vs controls: 0 h, detection *P = 0.023, tolerance ***P < 0.0001; 3 h, detection P = 0.369, tolerance ***P < 0.0001, 0 vs 3 h; methadone, detection ***P < 0.0001, tolerance ***P < 0.0001; controls, detection P = 0.211, tolerance, P = 0.857.

Opioid Tolerance and Hyperalgesia in Chronic Pain Patients After One Month of Oral Morphine Therapy: A Preliminary Prospective Study

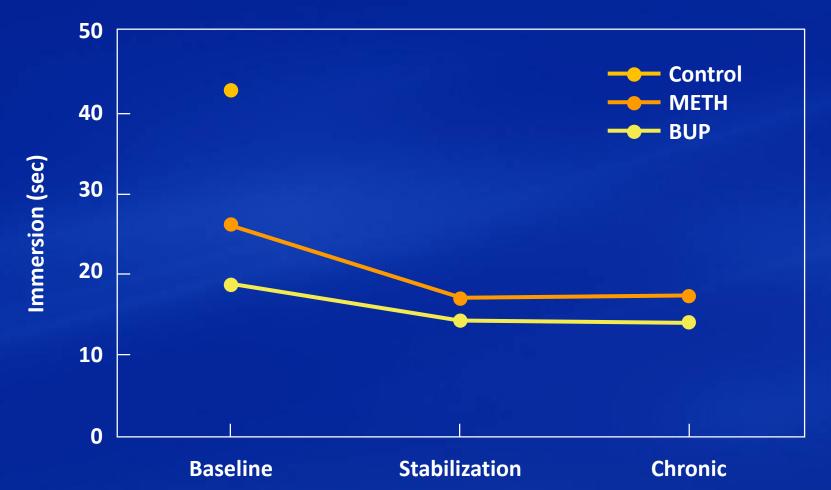
> Larry Chu, David Clark, Martin Angst Journal of Pain 2006; 7(1):43-48

Design:	Prospective observational stud pre-post sustained morphine	У,	
Patients:	Chronic low back pain (CLBP)		
Controls:	Patient prior to opioid		
Intervention: test	Cold pressor test	Heat pain	
Outcome:	Pain thresholds and tolerance Disability (Roland-Morris)		
	Opioid withdrawal (OOWS)		
	Remifentanil analgesia		
	Morphine and metabolite level	S	

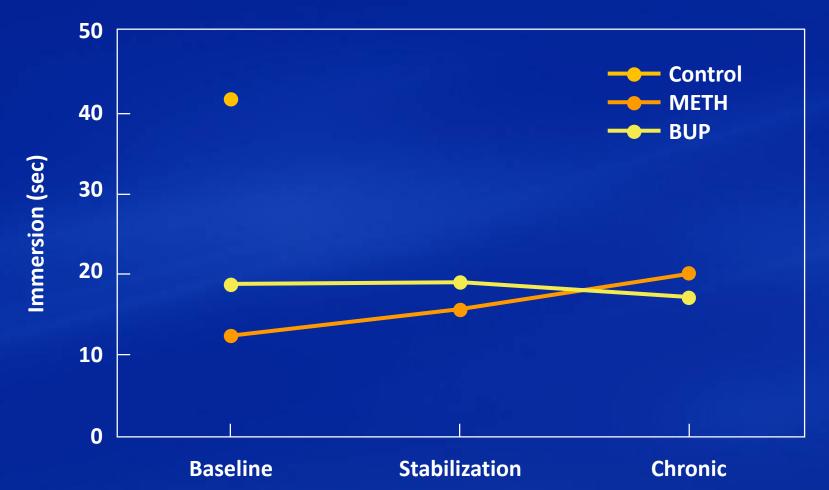
Cold Pressor Test

The experimental pain threshold (time to first pain) and pain tolerance (time to intolerable pain) were assessed with aid of the cold pressor test before and 1 month after initiating chronic morphine therapy in 6 patients with chronic low back pain. The experimental pain threshold and pain tolerance were significantly decreased after 1 month of oral morphine therapy, indicating the development of opioid-induced hyperalgesia (paired *t* text. #pain threshold and *pain tolerance, P < .01)

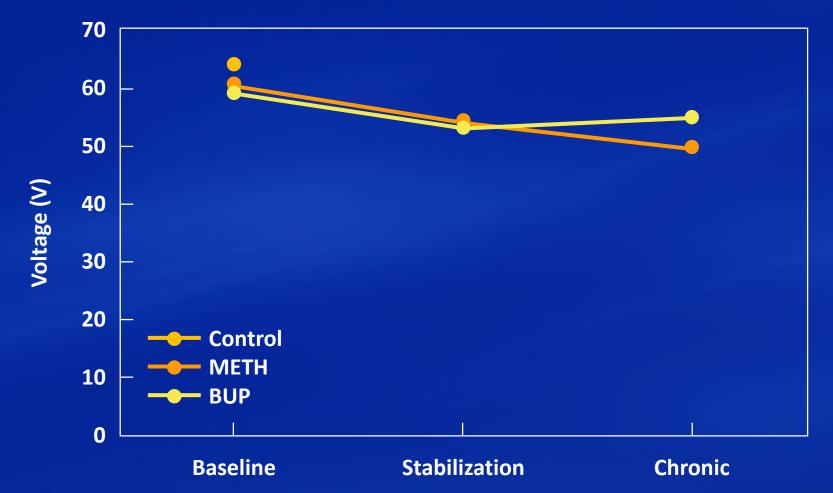
The remifentanil target plasma concentration vs analgesic response relationship was determined before and 1 month after initiating chronic oral morphine therapy in 6 patients with chronic low back pain. Analgesic effects were quantified with aid of the cold pressor pain test. The potency of remifentanil for increasing the experimental pain threshold (time to first pain) and pain tolerance (time to intolerable pain) was significantly decreased after 1 month or oral morphine therapy indicating the development of analgesic tolerance (mean \pm standard error of the mean). Decreased potency was reflected statistically by a flattening of the slope or a right shift of individual plasma concentration vs analgesic response relationships (paired *t* test [#]pain threshold, *P* = .03; *pain tolerance *P* < .01).

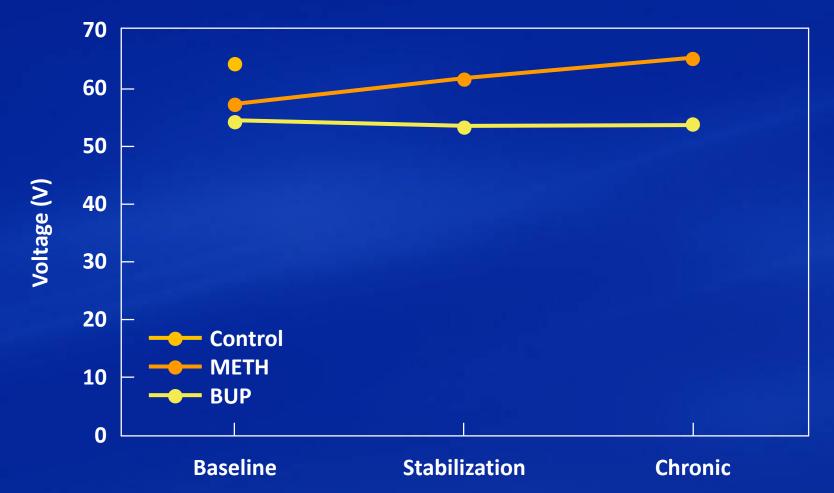

- Remifentanil target concentration versus analgesia
 - Reduced 47% threshold
 - Reduced 49% tolerance (figure 5)

Hyperalgesia in Heroin Dependent Patients and the Effects of Opioid Substitution Therapy


Peggy Compton, Catherine P. Canamar,

Maureen Hillhouse, et al. *Journal of Pain* 2012; 4:401-409


Design:	Survey, heroin addicts, and drug free controls	
Patients: buprenorphine	Heroin addicts entering methadone maintenance	or
Controls:	Drug-free individuals	
Intervention:	Cold pressor test	
	Electrical stimulation test	
	12 weeks, 2 urine tests negative	
Outcome:	Pain tolerance trough and preak	
	at stabilization and 12 weeks	


Cold-pressor pain tolerance (seconds) at trough medication plasma levels

Cold-pressor pain tolerance (seconds) at peak medication plasma levels

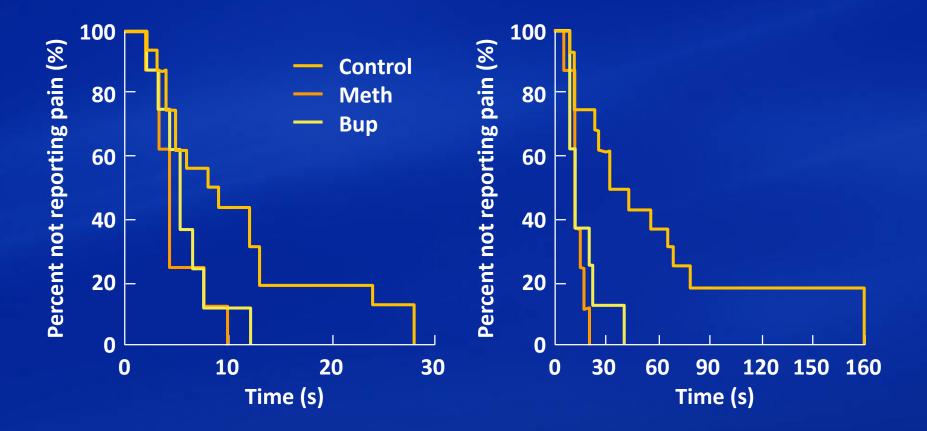
Electrical stimulation pain tolerance (volt) at trough medication plasma levels

Electrical stimulation pain tolerance (volt) at peak medication plasma levels

Comparison of Pain Models to detect Opioid Induced Hyperalgesia

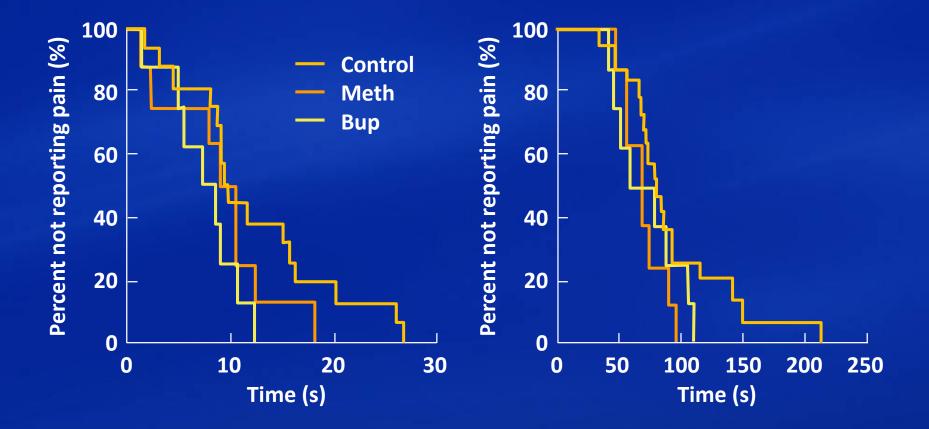
Sumithra Krishnan, Amy Slater, Thomas Sullivan Journal of Pain Research 2012; 5:99-106

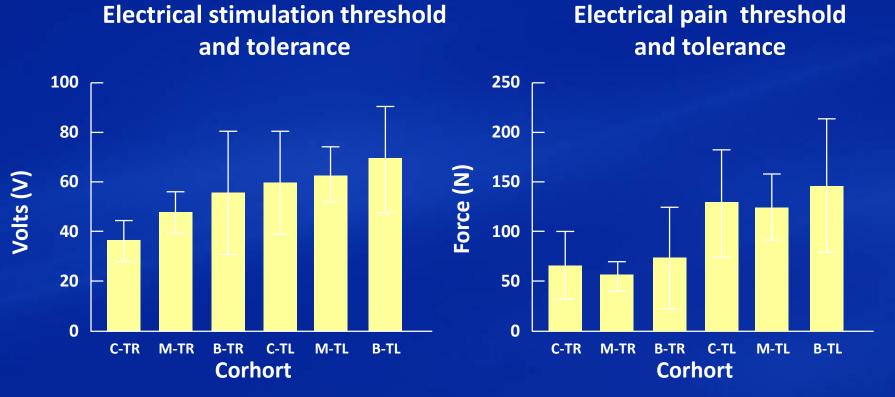
		Gr	
De	221	gı	•


Patients: Controls: Intervention:

Outcome:

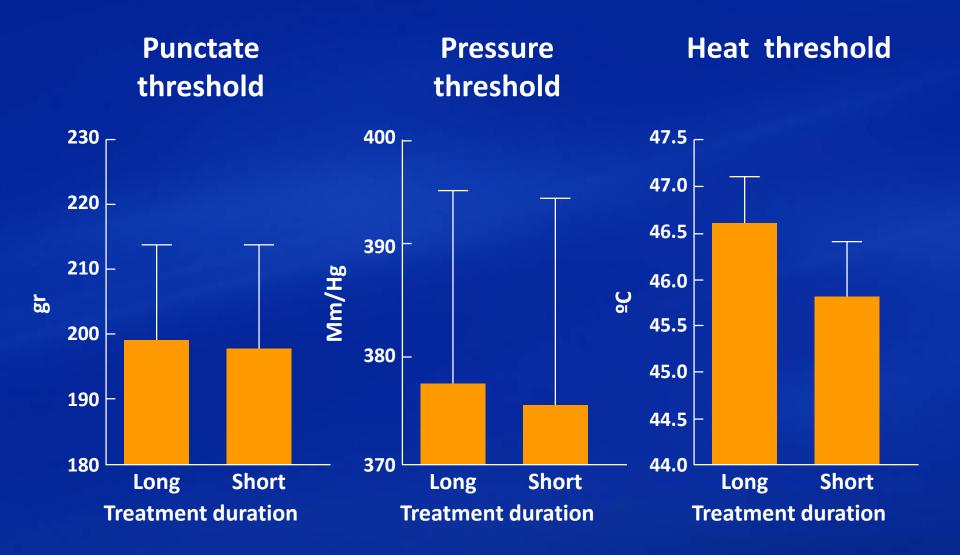
Comparison of buprenorphine and methadone maintained individuals with healthy controls **Opioid dependent individuals** Healthy matched controls Cold pressor test **Electrical stimulation test** Mechanical pressure test Ischemic pain test Pain thresholds and tolerance


Cold pain threshold

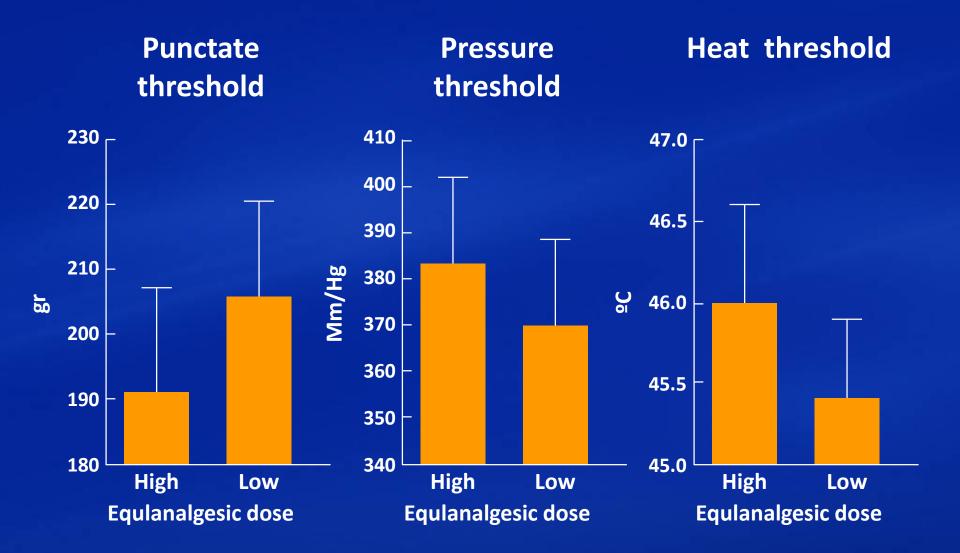

Cold pain tolerance

Ischemic pain threshold

Ischemic pain tolerance

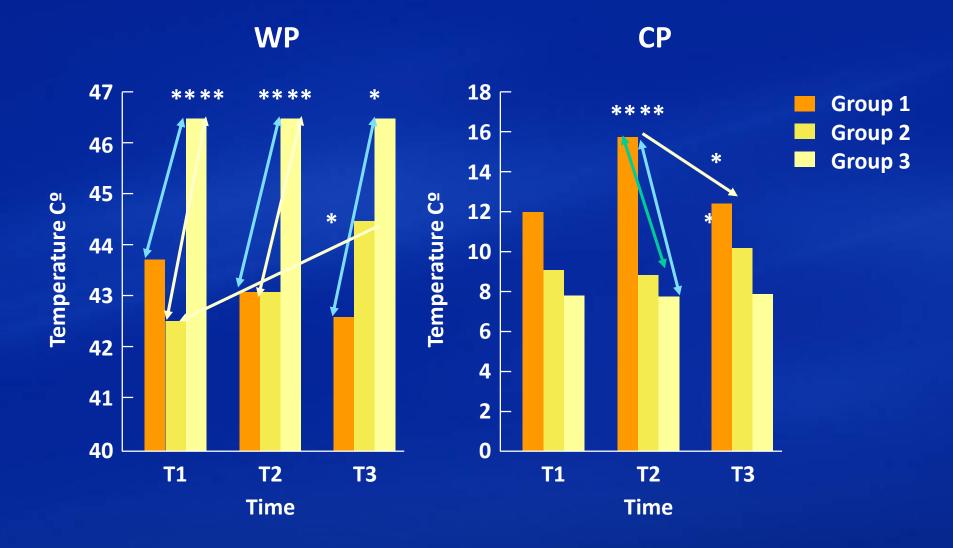

Meth, methadone-dependent subjects; Bup, buprenorphine-dependent subjects; C-TR, controls' threshold; M-TR, methadone-dependent subjects' threshold; B-TR, buprenorphine-dependent subjects' threshold; C-TL, controls tolerance; M-TL, methadone-dependent subjects' tolerance; B-TL, buprenorphine-dependent subjects' tolerance

Oral Opioid Administration and Hyperalgesia in Patients with Cancer or Chronic Non-malignant Pain


> Igor Resnikov, Dorit Pud, Elon Eisenberg British Journal of Clinical Pharmacology 2005; 60 (3):311-318

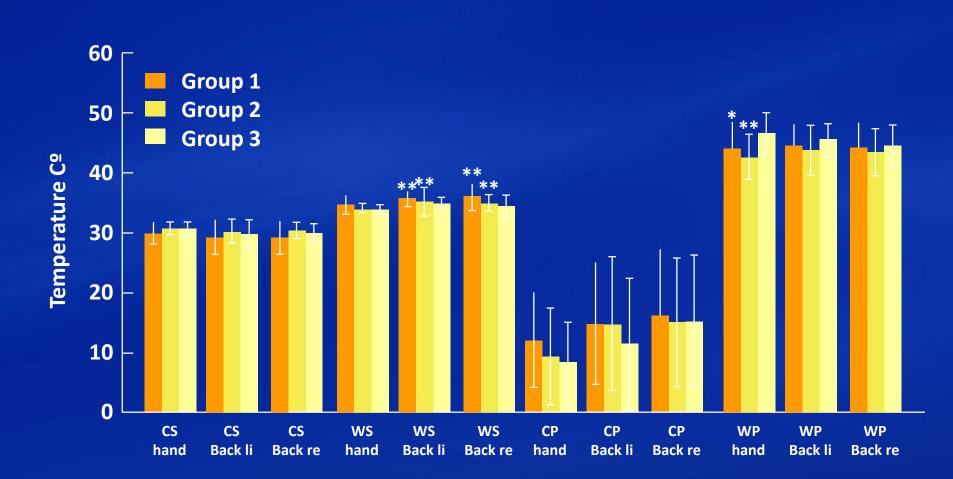
Cross comparison of Design: individuals with CNCP on non-opioid, weak and strong opioid analgesics Participants: $CNCP \ge 3$ months **CNCP** without opioids Controls: Intervention: Mechanical pain and threshold Heat pain and threshold

Results: Short vs. Long Term


Results: High vs. Low Dose

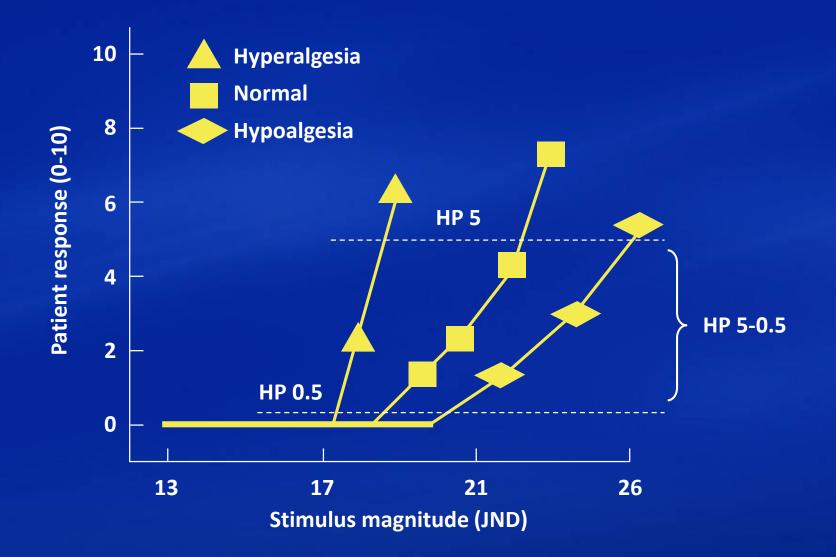
Longitudinal Observation of Changes in Pain. Sensitivity During Opioid Tapering in Patients with Chronic Low-Back Pain

> Hail Wang, Michael Akbar, Nina Weinsheimer, et al. *Pain Medicine* 2011; 12:1720-1726


Design:	 3 group comparison CLBP + opioid (1) CLBP - Opioid (withdrawal) (2) Healthy controls (3)
Participants:	CLBP ± Opioids
Intervention:	Cold pressor test
	Heat test
Outcomes:	Cold sensation, pain threshold
	Heat pain threshold
	3 time periods: day 0, 3 weeks,
	6 months

Individuals stopped at perception of pain, but not tolerance to pain Does Long-term opioid Therapy Reduce Pain Sensitivity of Patients with Chronic Low Back Pain? Evidence from Quantitative Sensory Testing

> Hail Wang, Christian Fischer, Gang Chen, et al. *Pain Physician* 2012; 15:ES135-ES143

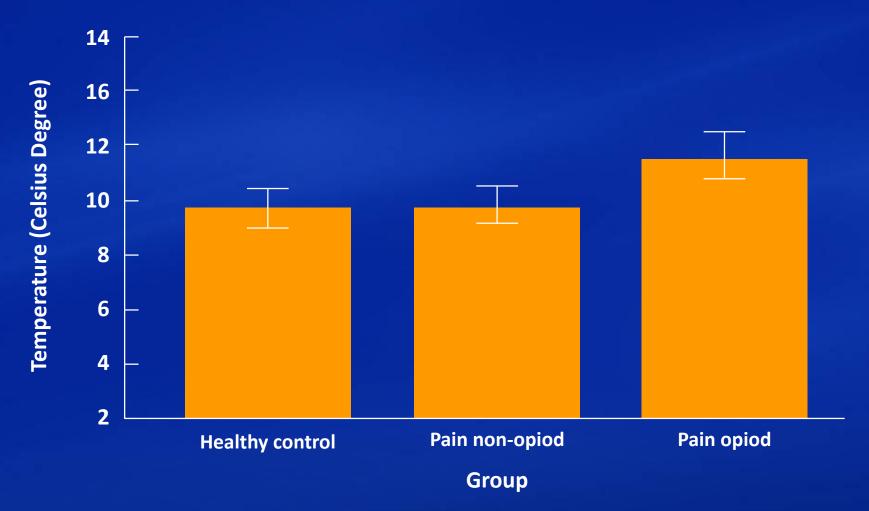

Design:	3 group comparison	
	CLBP + opioid (1)	
	CLBP – Opioid (withdrawal) (2)	
	Healthy controls (3)	
Participants:	CLBP ± Opioids	
Controls:	Healthy Individuals	
Intervention: pain	Cold detection thresholds	and
	Warm detection thresholds	and
pain		
Outcomes:	Perception and pain thresholds	

Associations between Heat Pain Perception and Opioid Dose Among Patients with Chronic Pain Undergoing Opioid Tapering

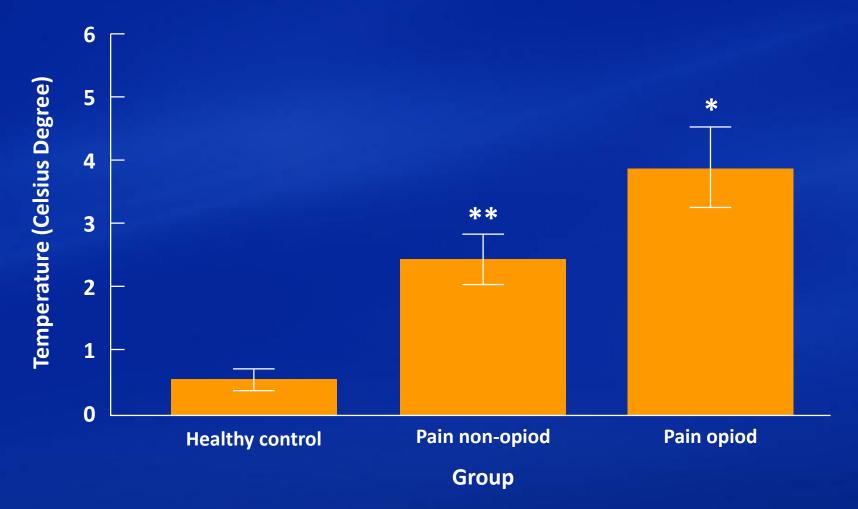
William Hooten, Carlos Mantilla, Paola Sandroni Pain Medicine 2010; 11:1587-1598

Cross comparison of individuals Design: with pain on and not on opioids **Patients:** Heterogeneous patients population in pain Pain patients not on opioids, Controls: tapered Intervention: Heat perception Heat Heat perception to pain heat pain

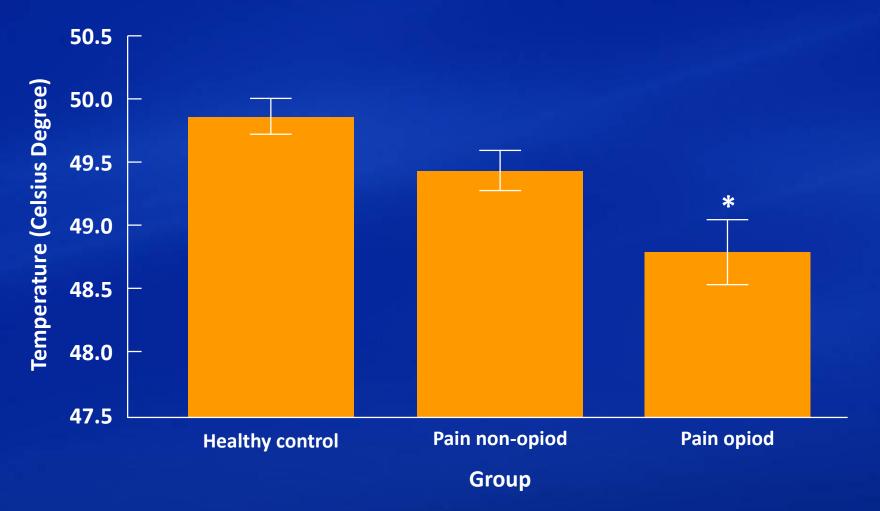
- Higher opioid doses greater hyperalgesia (lower HP5-0.5)
- Taper lead to hypoalgesia (higher HP5-0.5)
 - Right-shifted curve

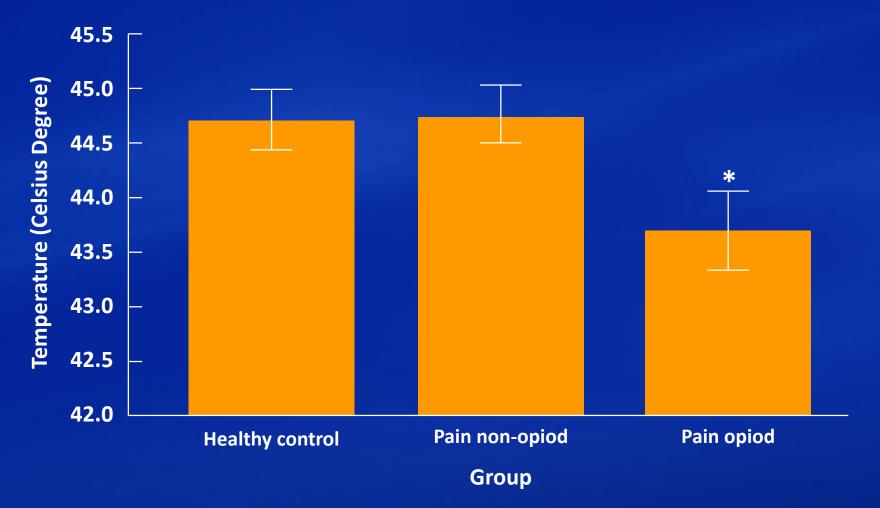

Conditioned Pain Modulation (DNIC)

Increased Pain Sensitivity in chronic Pain Subjects on Opioid Therapy: A Cross-Sectional Study using Quantitative Sensory

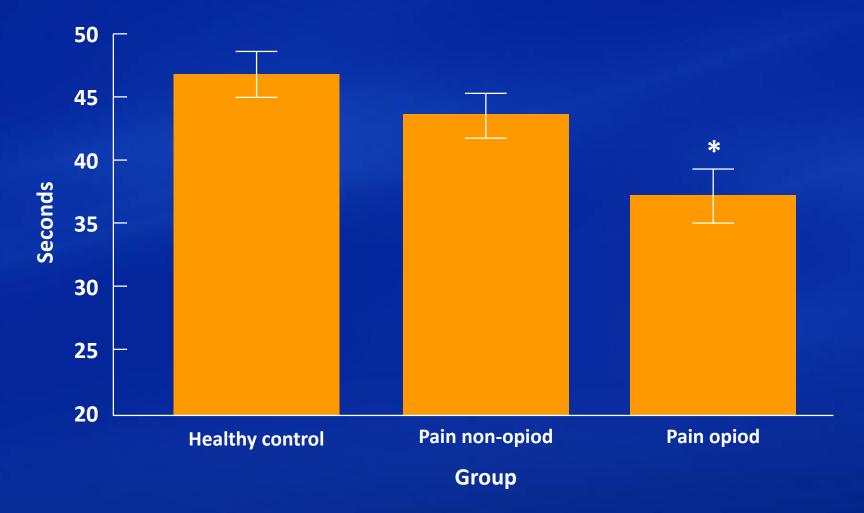

> Y. Zhang, Shihab Ahmed, Trang *Pain Medicine* 2014; in press

Design:	3 group comparison
	CLBP + opioid (1)
	CLBP – Opioid (withdrawal) (2)
	Healthy controls (3)
Patients:	Opioid tolerant chronic pain patients
Controls:	Chronic pain and no opioids
	Healthy Individuals
Intervention:	Cold and warm thresholds
	Cold and warm pain thresholds
	Cold and warm pain tolerance
	Temporal summation
	Conditioned pain modulation
Outcomes:	Same as above

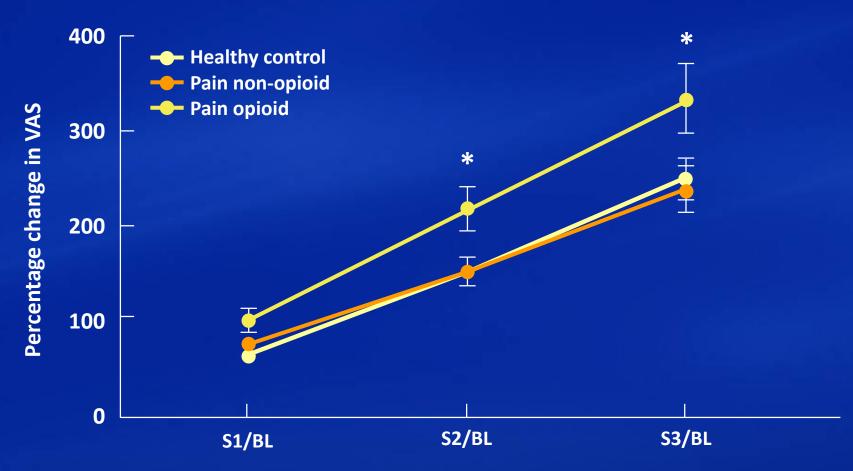

Cold Pain Threshold

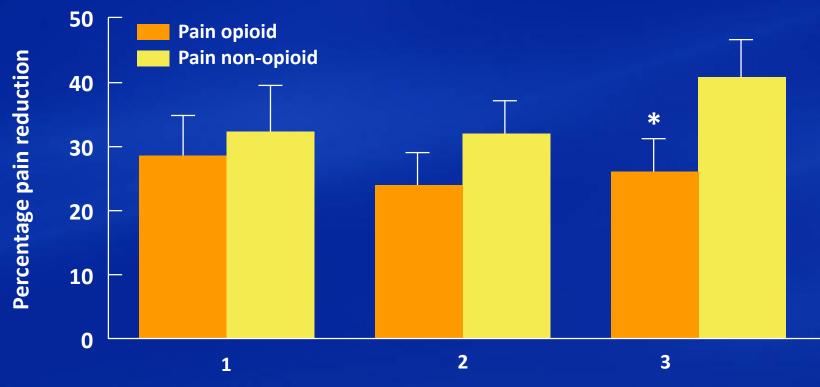

Lowest Tolerated Cold Pain Temperature

Maximal Tolerated Temperature



Heat Pain Threshold

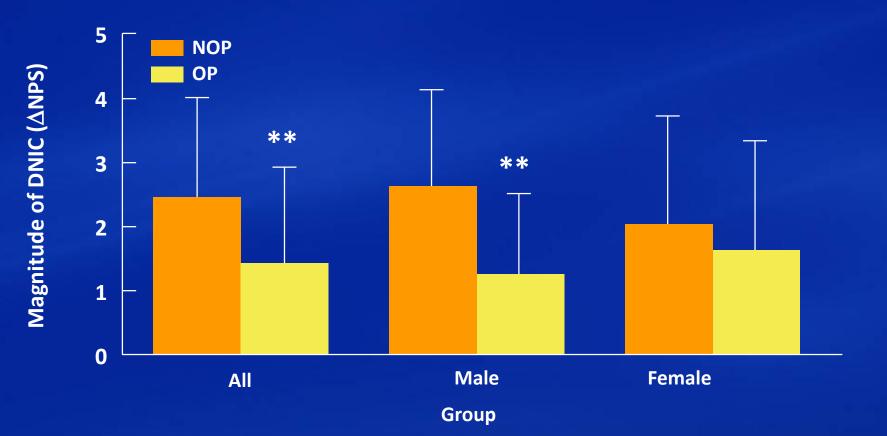



Supra-threshold Heat Pain Tolerance

Pain Summation

Magnitude of DNIC

Heat stimulus

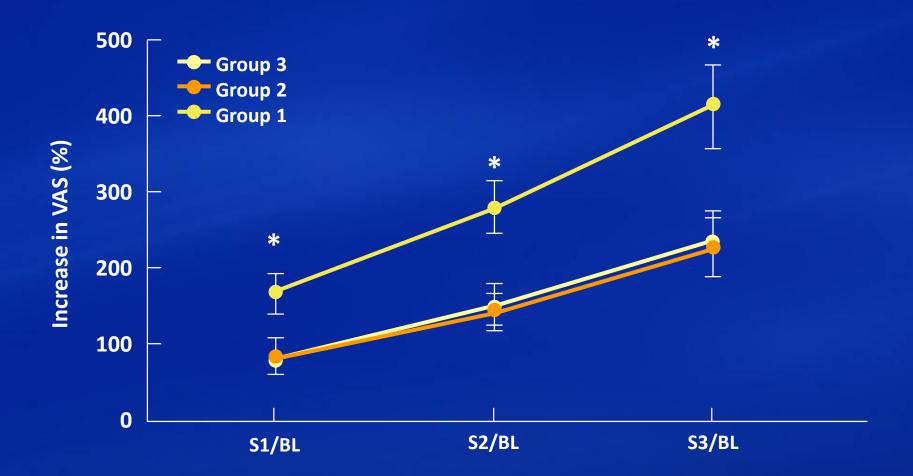

Diffuse noxious inhibitory control (DNIC) in chronic pain subjects on opioid and non-opioid therapy.

*P \leq 0.05 pain opioid group compared with pain non-opioid group.

Oral Opioid Use Alters DNIC but not Cold Pain Perception in Patients with Chronic Pain – New Perspective of Opioid-Induced Hyperalgesia

Krestin Ram, Elon Enenberg, May Haddad, et al. *Pain* 2009;139:431-438

Design: opioid and not on	Comparison of chronic pain patients (cancer and non-ca opioids	ncer)	on
Patients:	As above		
Controls:	Chronic cancer patients not on opioids		
Intervention: pressor test	Conditioned pain modulatio	n	Cold
Outcomes: tolerance and pair	DNIC า	Cold	



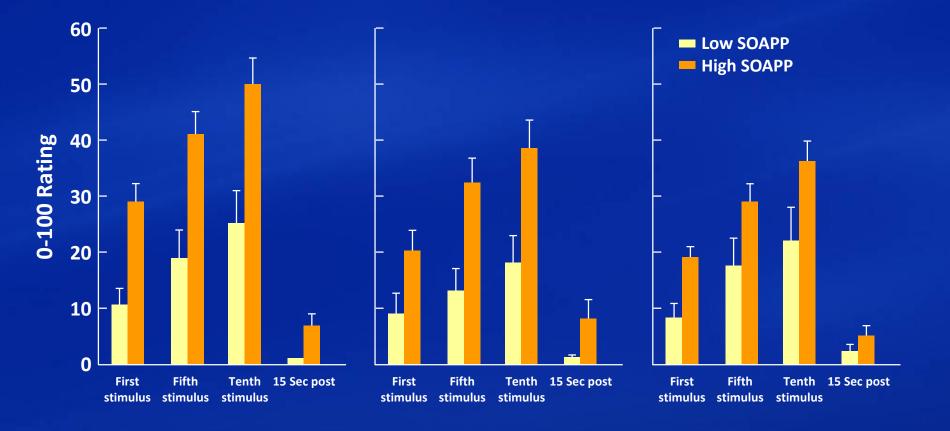
Temporal Summation

Altered Quantitative Sensory Testing Outcome in Subjects with Opioid Therapy

Lucy Chen, Charlene Malarick, Lindsey Seefeld Pain 2009;143:65-70

Design:	3 group comparison
	CLBP + opioid (1)
	CLBP – Opioid (withdrawal) (2)
	Healthy controls (3)
Patients:	CNCP on opioids
Controls:	Health controls, CNCP not on opioids Intervention: Cold and heat thresholds Cold
and heat pain thresholds Cold and heat tolerance	
	Temporal summation to heat stimulus Mechanical
pain thresholds	
Outcomes: tolerance betwee	Differences between thresholds, pain and en groups Correlation with opioid doses

Heat pain sensitivity was the result of pain and not opioid


Increased temporal summation was the result of the opioid

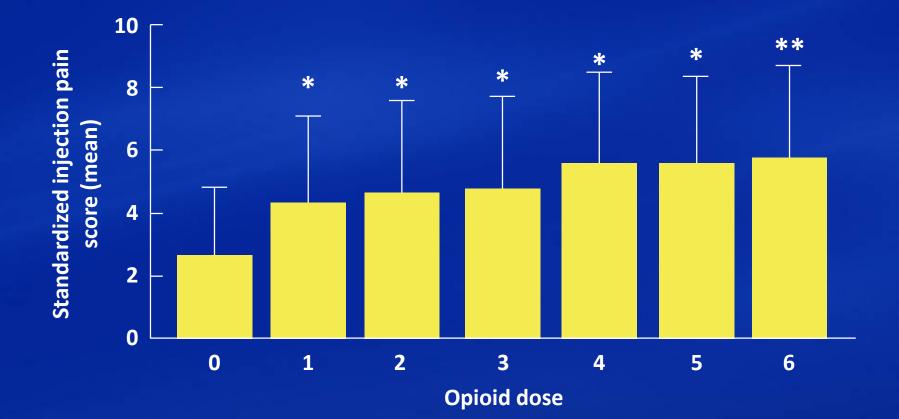
Elevated Pain Sensitivity in Chronic Pain Patients at Risk for Opioid Misuse

Robert Edwards, Ajaj Wasan, Ed Michna, et al. Journal of Pain 2011;12(9):953-963 Design: Patients: Controls:

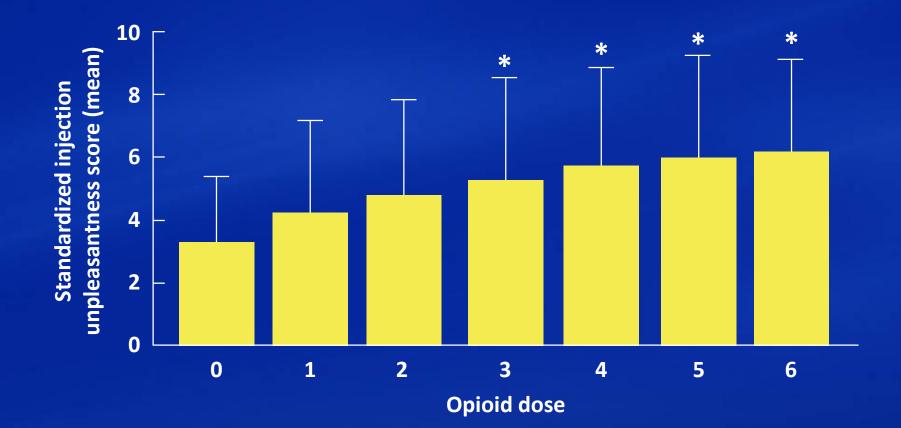
Intervention: temporal Cross-sectional cohort study Individuals with spinal pain (CNCP) Cross comparison using opioid doses SOAPP-R abuse risk Catastrophizing summation pressure pain thresholds Heat and cold thresholds Heat and cold pain thresholds

Results: A- No Opioid to C-High Opioid Dose

- Mechanical pain correlated with SOAPP-R
- Pain threshold inversely correlated with SOAPP-R
- No association with opioid doses


Local Anesthetic Injection Pain and Unpleasantness

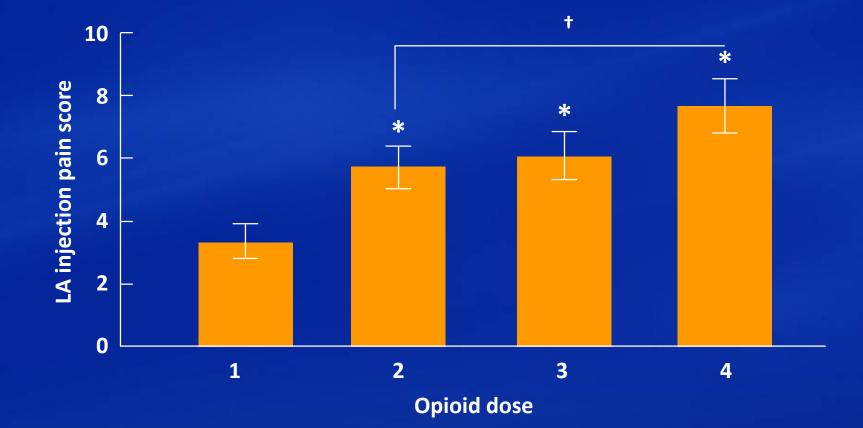
The Effect of Opioid Dose and Treatment Duration on the Perception of a Painful Standardized Clinical Stimulus


> Steven Cohen, Paul Christo, Shuxing Wang Regional Anesthesia and Pain Medicine 2008;33(3):199-206

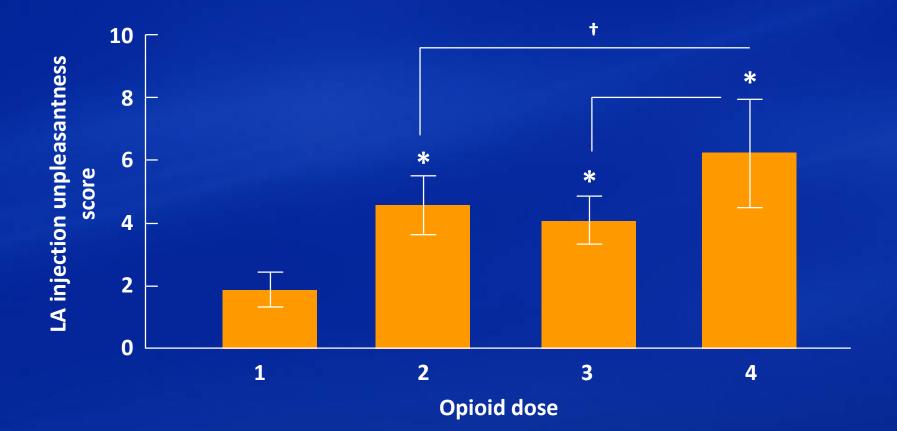
Design:	2 group comparison
	Healthy controls
	Individuals undergoing interventional procedure
Patients:	Individuals undergoing
	interventional procedures on
opioids	
Controls:	Volunteers
Intervention:	Local anesthetic injection
Outcomes:	Pre-anesthetic opioid dose
	Pain from injection
	Unpleasantness from injection

Results: 0 - No Opioid to 6 - >300mg MED

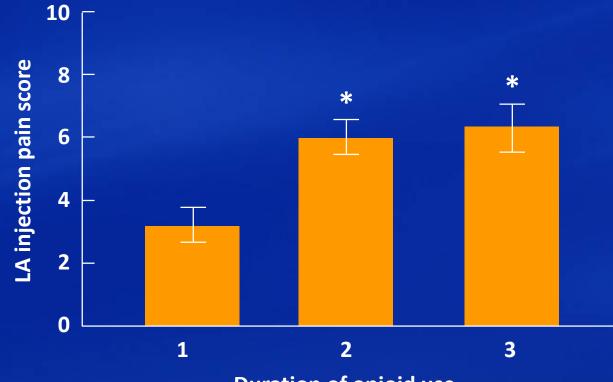
Results: 0 - No Opioid to 6 ->300mg MED



High-Dose Daily Opioid Administration and Poor Functional Status Intensify Local Anesthetic injection Pain in Cancer Pain


Shin Kim, Duck Yoon, Kwan Choi, et al. *Pain Physician* 2013;16:E247-E256

Design:	2 group comparisonCancer patients not on opioids	
	Cancer patients on opioids	
Patients:	Cancer patients on opioids	
Controls:	Cancer patients not on opioids	
Intervention:	Diagnostic or therapeutic nerve block, local anesthetic	
Outcomes: unpleasantness to	BPI Pain Pain Pain Pain	n and


Results: 1 - No Opioid to 4 - > 200MED

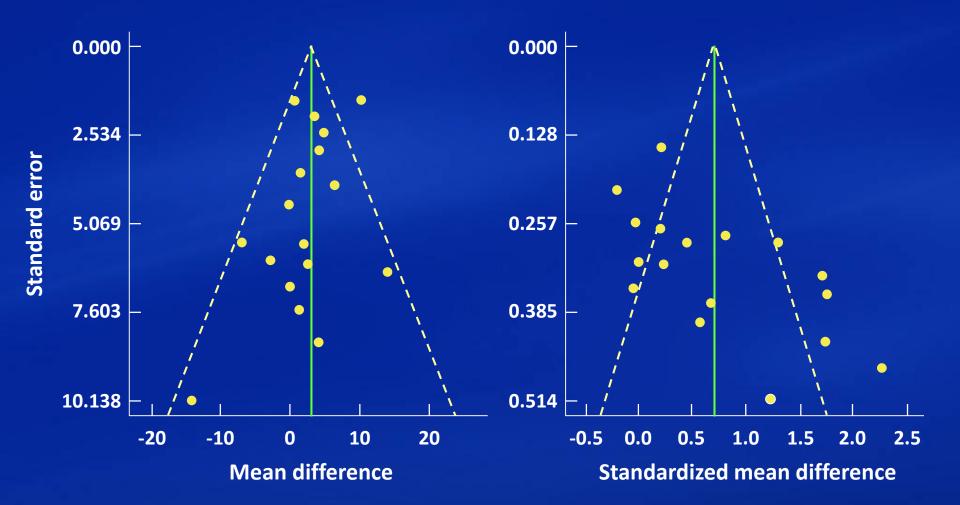
Results: 1 - No Opioid to 4 - > 200MED

Results: 1 - No Opioid to 3 -> 1 Year

Duration of opioid use

Post-Surgery Hyperalgesia

Opioid-Induced Hyperalgesia in Patients after Surgery: A Systematic Review and a Metaanalysis


D. Fletcher, V. Martinez British Journal of Anesthesia 2014;112(6):991-1004

Design:	Meta-analysis
Patients:	Individuals undergoing surgery who received intra-operative remifentanil fentanyl,
sufentanil	
Controls: received	Individuals undergoing surgery who none of the opioids or low doses
Intervention:	Surgery, intra-operative opioid administration
Outcomes:	Pain at rest 24 hours after surgery Cumulative morphine equivalents
and 4 hours post	over 24 hoursPain at 1-opMechanical allodynia around the woundOpioid adverse events

Results

	Experimental Mean SD Total		Control				Mean difference	Mean differer			nce		
Study or subgroup			Mean SD 1		Total	Weight	IV, Random, 95% Cl		IV, Random, 95			5% CI	
Pain at 1h													
Agata 2010	51.5	14.7	15	47.5	20.8	15	7.3%	4.00 {-8.89, 16.89]			_ <mark>_</mark>		
Carvalho 2012	7.9	10	9	10.8	10	9	9.5%	-2.90 [-12.14, 5024]					
Cho 2008	63.5	18	20	20	24.7	20	7.0%	43.50 [30.11, 56.89]					
Cortinez2001	54	30	30	50	22	30	7.1%	4.00 [-9.31, 17.31]			_ <mark>-</mark>		
Guignard 2001	67.7	18.9	24	39.9	57.8	20	2.9%	27.80 [1.36, 54.24]					
Lee 2013	22.8	7.5	29	19.6	7.4	28	12.9%	3.20 [-0.67, 7.07]			-		
Lee 2013a	51.4	4.2	29	41.4	6.2	40	13.5%	10.00 [7.54, 12.46]			-		
Ryu 2007	45.7	22	30	38.5	11.5	30	9.7%	7.20 [-1.68, 16.08]					
Shin 2010	37	16	88	35.1	10	98	12.9%	1.90 [-1.99, 5.79]			-		
Terao 2010	70	31	13	40	25	13	3.9%	30.00 [8.35, 51.65]				•	
Xuerong 2008	23	29	15	17	18	15	5.3%	6.00 [-11.27, 23.27]			- <mark>-</mark>		
Yeom 2012	70	18	20	57	20	20	7.9%	13.00 [1.21, 24.79]					
Total (95% CI)			322			338	100.0 %	9.40 [4.35, 14.46]			•		
Heterogeneity: t2=4	7.80; x ² =5	7.06, df	=11 (<i>P</i> <	0.00001): <i>I</i> ²-81%								
Test for overall effe			· · · · · · · · · · · · · · · · · · ·						-100	-50	0	50	100
										avors erimenta	ı	Favo conti	

Results

Results

Morphine equivalent dose consumption over 24 hours directly correlated with intra-operative administration of remifentanil, fentanyl, sufentanil

1. Is OIH modality specific?

 OIH appears to be relatively modality specific, most often observed with reduced cold tolerance, temporal summation and conditioned pain modulation

2. Is OIH opioid specific and duration related?

OIH does not appear to be limited to a single opioid. OIH may be dose related, little is known about duration though OIH can be seen with single opioid doses.

3. Is there an association between OIH and opioid analgesic tolerance?

There are very few studies to answer this question. A single study of remifentinal analgesia in opioid tolerance individuals suggests that analgesic tolerance can occur without OIH.
FIGURE 30

4. Is OIH a laboratory finding or does it have clinical relevance?

 OIH increases pain sensitivity to local procedures, increases opioid requirements post-operatively. There is some suggestion that pain sensitivity independent of opioids predisposes to opioid abuse

5. Does OIH have clinical relevance?

Yes

6. Is there an association between OIH and gender, age and addiction?

To date, there are no studies which have had gender or age as a primary outcome variable. Opioid maintained individuals demonstrate OIH using the cold pressor test but hyperalgesia appears to resolve when maintenance therapy is discontinued and the individuals remains drug free.

Questions